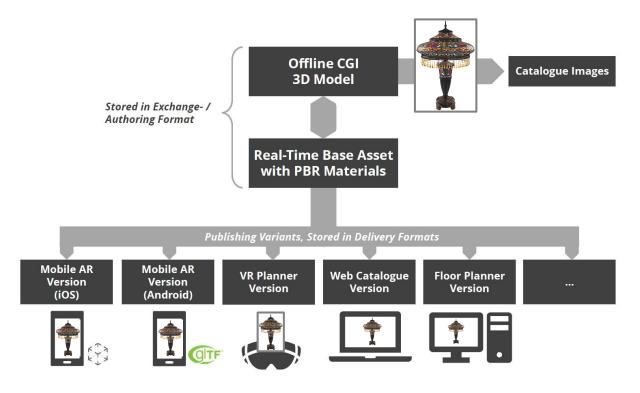


Geometry, Textures, and Workflow - Optimizing gITF

Tuesday, August 8, 2023 | Khronos BOF Series at SIGGRAPH 2023

Max Limper (DGG) | Adam Morris (Cesium)
Pawel Nikiel (DGG) | Andreas Vasilakis (Phasmatic)


Paweł Nikiel

- CTO @ DGG, Creators of RapidCompact
- Contributor to 3D Commerce & 3D Formats WGs
- Over 10 years of experience in 3D art, VR & AR development
- Focused on pipelines, automation & scale
- Everything interactive
- Meet me at the DGG booth (<u>#837</u>)

Many Publishing Targets

Cp. Khronos <u>3D Commerce Asset Creation Guidelines</u> v1.0 (section: <u>Publishing Targets</u>)

K H RON CON

Hardware & Bandwidth Constraints

Publishing Target	Max. Target File Size	Max. Target Triangle Count	Target (Max) Number of Draw Calls	Max. Target Bitmap resolution, to meet bandwidth requirements (JPG)
Single-Item Mobile AR or 3D Web Catalogue View	ЗМВ	150,000	<20 (500)	2K
Banner Ad View	500KB	30,000	<5 (100)	512
Web-based Planning Tool (recommendations for one out of multiple items)	1MB	40,000	<5 (50)	1K
Single-Item Desktop 3D Web View	3MB	250,000	<100 (800)	2K
Offline Rendering	No Limit	No Limit	No Limit	No Limit

Cp. Khronos 3D Commerce Asset Creation Guidelines v1.0 (section: Publishing Targets)

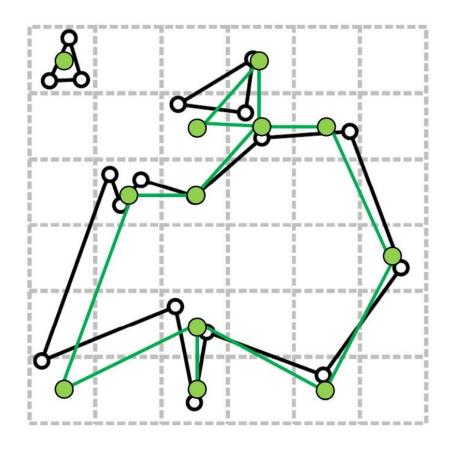
KHRON OS

3D Asset Optimization Workflow

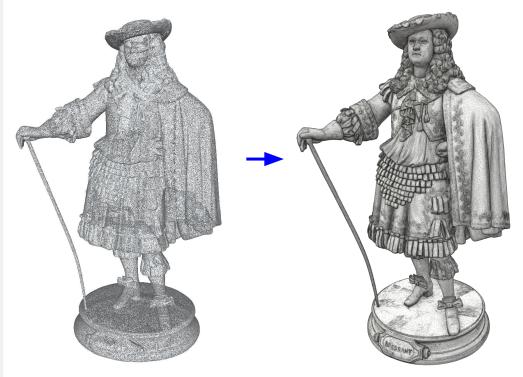
Images: Wayfair

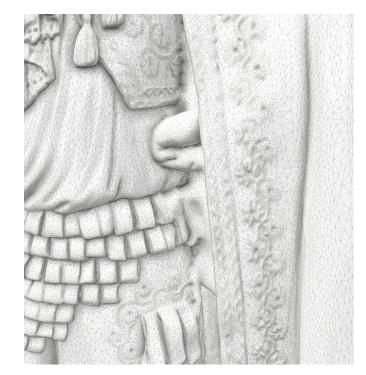
Clustering

What?


- Basic optimization technique originating in the 80's
- Fast performance
- Can be parallelized

When?


- Huge datasets, dense meshes
- Real-time computation
- Need to save memory

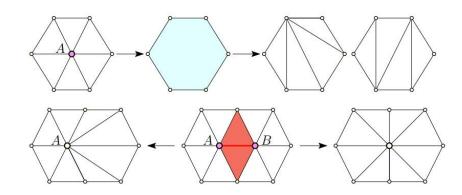

How?

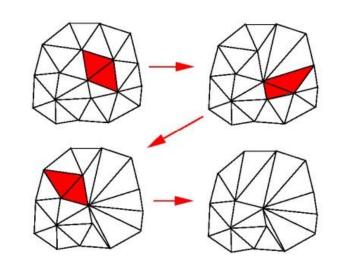
- Divide space into fixed-size grid
- Find representative position based on all vertices in each cell
- Merge all vertices to the position

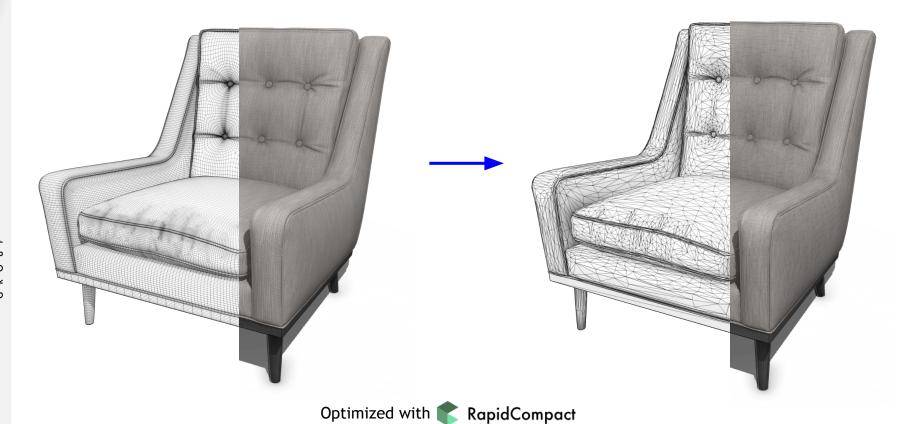
Clustering

Decimation

What?


- Well established technique
- Sequencial, difficult to parallelize
- Possible to balance performance vs accuracy depending on needs


When?

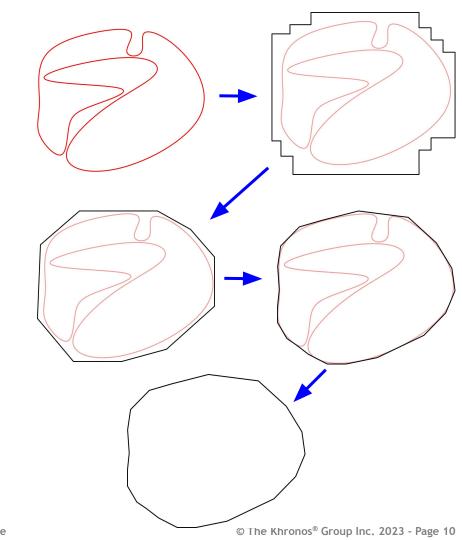

- Good input topology or 3D scans
- Specific number of tris expected
- Preservation of data needed (e.g. UVs)
- Not suited for high genus or noisy mesh
- Doesn't work well with overlaid layers

How?

- Calculate quadric error (or edge length)
- Find new positions with smallest offset from original curvature
- Easy to stack levels of simplification
- New method -> probabilistic quadrics

Remeshing

What?


- Can mean two things
- Still being perfected
- Can be quite slow due to shrink wrapping process, accuracy needed

When?

- Bad input
- High genus, complex assets
- Stacked layers
- Invisible geometry to remove
- Difficult to preserve data (e.g. UVs)


How?

- Create voxel grid
- Refine
- Shrink wrap
- Finding closest points is risky
- Decimate at the end of process

K H R O S O C P O

Remeshing

KHRON OS

Animation optimization

Animation curves

- Possible to simplify
- For interchange it's common to convert to high density linear curve due to different implementations of splines and others
- Usually very compressible data (10:1 ratio possible)
- Compression currently missing in glTF:(

Additionally:

- Rigid animations -> possible to simplify meshes
- Skinned animations -> additional steps needed, need to rebind new mesh to existing skeleton
- Skeleton simplification -> need to redirect weights to remaining bones
- Shape keys (morph targets) -> after simplification need to figure out which vertex is affected by which target

IronMan CC-BY courtesy of 9A Films / Nihar Arora

Animation optimization

#Polygons: 640K / 20K / 5K

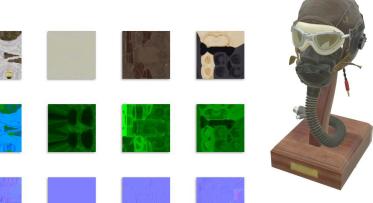
IronMan CC-BY courtesy of 9A Films / Nihar Arora

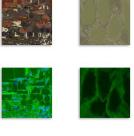
Max Limper

- Co-Founder and CEO @ DGG,
 Creators of <u>RapidCompact</u>
- Background in CS & 3D Graphics
- glTF Enthusiast & Contributor
- Meet me at the DGG booth (#837)

*S°

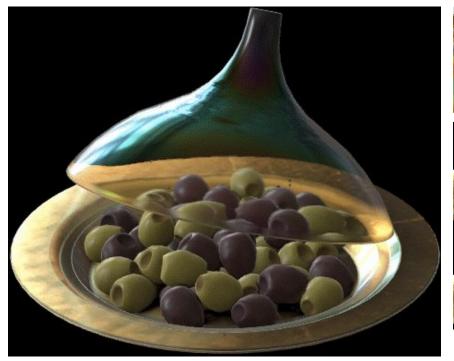
Optimizing Textures: Downscaling & Atlasing

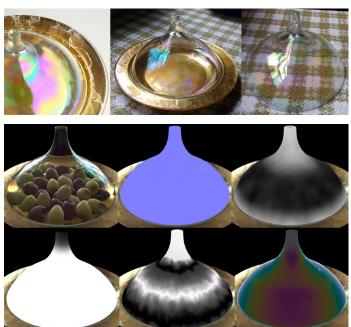

Input (10.90MB):


- 5 materials (leather, mask, glasses, stand, misc)
- 15 different maps (5 x base color / ORM / normals)

Output (2.59MB):

- 2 materials (opaque, transparent)
- 6 different maps (2 x base color / ORM / normals)
- 2K/1K resolution for opaque 256/128 for transparent
- Adaptive to 3D size, ORM also has smaller resolution




- Faster transmission & less GPU memory
- Faster rendering: less draws & texture switches
- Compressing individual texture maps -> Later (Andreas)

Example generated using https://rapidcompact.com RapidCompact

Defining Realistic Materials: glTF Extensions

Extensions used:

KHR_materials_transmission, KHR_materials_ior,
KHR_materials_volume (glass)

KHR_materials_iridescence (iridescence effect)

K H R O S O S

Optimizing Materials with KHR_materials_variants

- Enables a single self-contained GLB file for all colorways of a product
- Enables sharing of geometry across variants in one file
- We can share textures (e.g., normals) across variants, too

Most "Aggressive" Optimization: Drop Textures

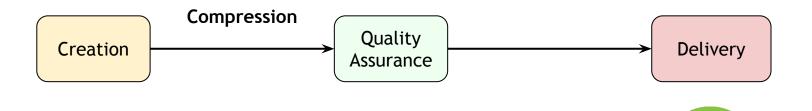
Textured, 6.50MB

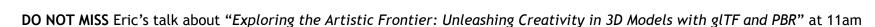
Untextured ("DropTextures"), 28KB

- Use representative untextured materials instead of textures
- For ultra-compact, fast-loading previews
- Aim: super-fast loading to show something to users of 3D Web / AR (while high-resolution content is loading in the background)

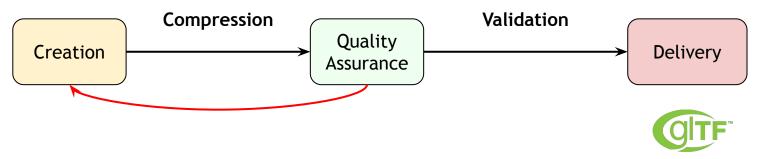
Example generated using https://rapidcompact.com
RapidCompact

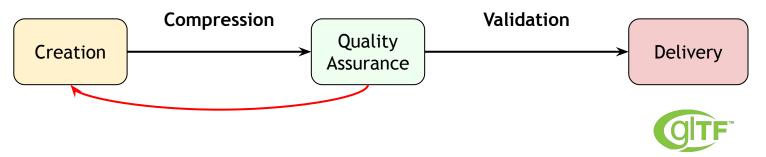
Andreas Vasilakis


- Co-Founder and CEO @ Phasmatic
 - Photorealistic 3D eCommerce



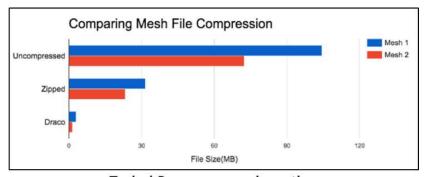
- WebGL/glTF Ray Tracing
- PhD in CS & 3D Graphics
- Postdoc Researcher & Adj. Professor





- Command Line Interfaces for Compression
 - Not direct visual comparison
 - Non-intuitive & user-friendly for artists
 - Is compliant with use case specifications?

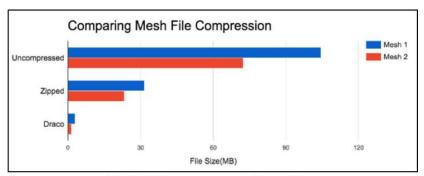
DO NOT MISS Eric's talk about "Exploring the Artistic Frontier: Unleashing Creativity in 3D Models with gITF and PBR" at 11am


- Command Line Interfaces for Compression
 - Not direct visual comparison
 - Non-intuitive & user-friendly for artists
 - Is compliant with use case specifications?
- Can we do better?
 - Interactive online tools to help artists!

DO NOT MISS Eric's talk about "Exploring the Artistic Frontier: Unleashing Creativity in 3D Models with gITF and PBR" at 11am

Enabling Efficient Geometry Size Reduction

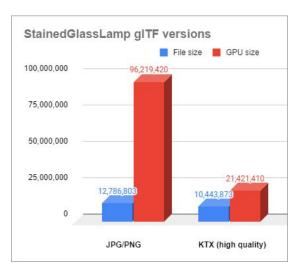
DRACO provides advanced compression for mesh geometry



Typical Draco compression ratios

Enabling Efficient Geometry Size Reduction

DRACO provides advanced compression for mesh geometry


Typical Draco compression ratios

 MESHOPT provides compression and fast decoding for geometry, morph targets, and animations

K H RON OS.

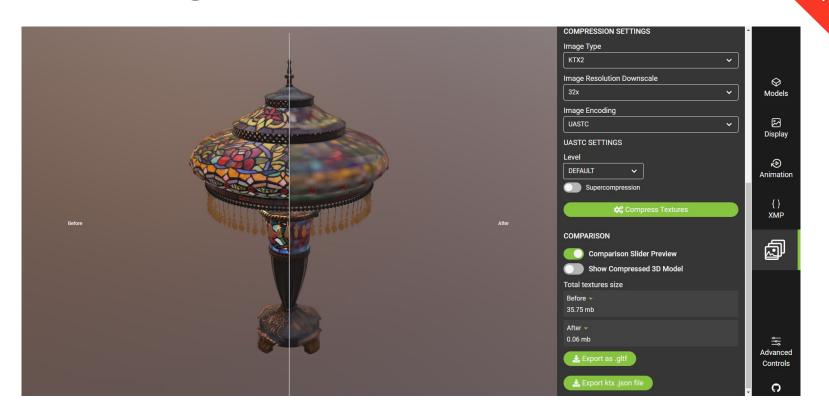
Enabling Compact and Efficient glTF Textures

KTX Artist Guide

Khronos gITF-Compressor is here!

100

- Interactive tune texture compression size and quality
 - Intuitive Texture Selection
 - Complete image information display
 - Default selections based on image use
 - Flexible Texture Compression
 - JPG, PNG, WebP as well as KTX
 - Advanced KTX compression options
 - 2D and 3D Side-by-Side Live Texture Comparison
 - Optimized Assets Export


- Extends the capabilities of the Khronos open-source glTF Sample Viewer
- Future release will include Geometry Compression capabilities

Live Tool: glTF-Compressor - Github: glTF-Compressor

Khronos gITF-Compressor: Live Demo

Live Tool: glTF-Compressor - Github: glTF-Compressor

Khronos gITF Asset Auditor

Quickly check gITF asset for a specific use case, defined by an audit profile

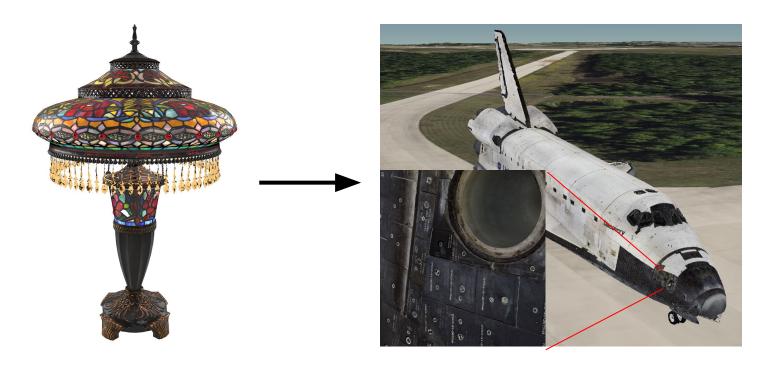
Audit Report

gITF Validator:	PASS	Errors: 0, Warnings: 0, Hints: 0, Info: 0		Reference Link
File Size:	PASS	1kb <= 7,650kb <= 10,240kb		Reference Link
Triangle Count:	PASS	22,700 <= 100,000		Reference Link
Material Count:	PASS	3 <= 5		Reference Link
Node Count:	PASS	1 <= 3 <= 5		Reference Link
Mesh Count:	PASS	1 <= 1 <= 5	Ŏ	Reference Link

Web Browser

```
/3dc-validator-tests/schemas/publishing-targets/single-item-web-ar.json \
 /3dc-validator-tests/models/blender-default-cube-density.glb \
  /3dc-validator-tests/products/blender-default-cube-passing.json
  3D COMMERCE VALIDATOR -
  Version: 1.0.0-alpha.12
                                                         | Errors: 0, Warnings: 0, Hints: 16, Info: 0
                             glTF Validator: PASS
                                  File Size: PASS
                             Triangle Count: PASS
                                                         12 <= 150,000
                             Material Count: PASS
                                 Mesh Count: PASS
                                                         4 <= 5
                                 Node Count: FAIL
                            Primitive Count: FAIL
         Texture Dimensions are Powers of 2: PASS
Texture Dimensions are Square (width=height): NOT TESTED | true; not required by schema
                      Texture Height <= Max: PASS
                      Texture Height >= Min: NOT TESTED
                       Texture Width <= Max: PASS
                       Texture Width >= Min: NOT TESTED
                     Dimensions Not Too Big: PASS
                   Dimensions Not Too Small: PASS
                   Dimensions Match Product: FAIL
              Root Node has Clean Transform: PASS
                        UVs in 0 to 1 Range: PASS
                                                          u: 0.00 to 1.00, v: 0.00 to 1.00
                   Minimum Pixels per Meter: PASS
                                                         256 >= 100
                               Inverted UVs: FAIL
```

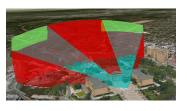
Command Line Interface


Live Tool: <u>glTF-Asset-Auditor-Release</u> - Github: <u>glTF-Asset-Auditor</u>

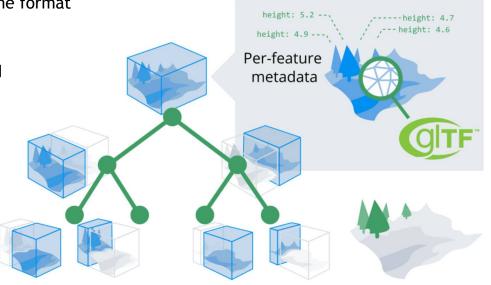
Adam Morris

- Staff Software Engineer @ Cesium
- M.S. in Human Computer Interaction from Iowa State University
- glTF enthusiast and Khronos 3D Formats Working Group member.
- Comprehensive XR background and experience.

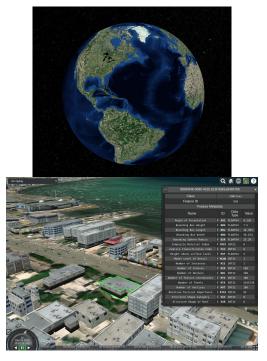
Intelligent Organization



How do we get from a single model, to handling highly detailed scenes?

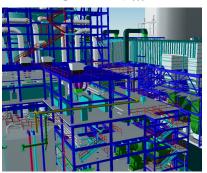

3DTiles. Primer

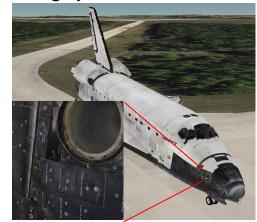
- Open standard for streaming massive heterogeneous 3D geospatial data
 - Terrain & imagery, 3D buildings, photogrammetry, point clouds, BIM models, interiors, etc.
 - Multiple source data types, one runtime format
- Visualization + analysis
- Combine:
 - Flexible spatial data structure in JSON
 - "Runtime ready" binary tile formats
 - glTF for 3D model formats
 - Vertex/polygon-level metadata
 - Declarative styling
- Started by Cesium in 2015
- OGC Community Standard since 2019



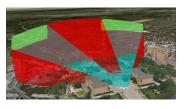
Spatial hierarchy

Styling

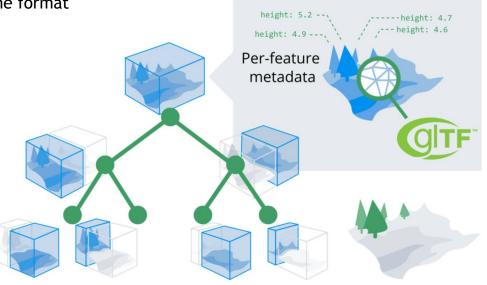

geospatial...


point clouds...

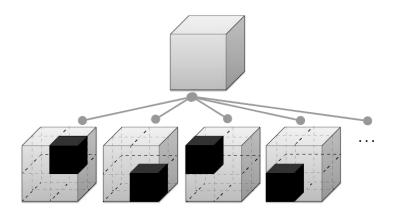
CAD/BIM...

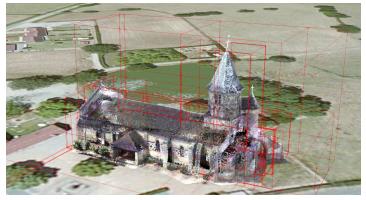


highly detailed models.


3DTiles. Primer

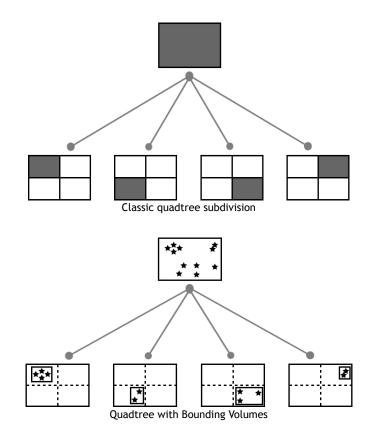
- Open standard for streaming massive heterogeneous 3D geospatial data
 - Terrain & imagery, 3D buildings, photogrammetry, point clouds, BIM models, interiors, etc.
 - Multiple source data types, one runtime format
- Visualization + analysis
- Combine:
 - Flexible spatial data structure in JSON
 - "Runtime ready" binary tile formats
 - glTF for 3D model formats
 - Vertex/polygon-level metadata
 - Declarative styling
- Started by Cesium in 2015
- OGC Community Standard since 2019

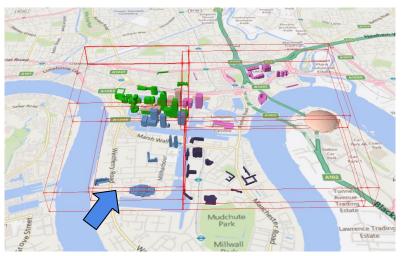



Spatial hierarchy

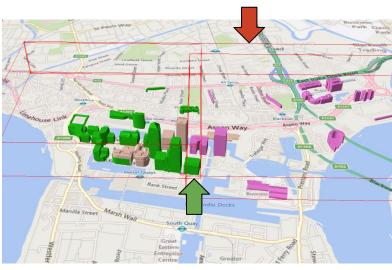
Styling

Octrees


- Traditional method for subdivision in 3D graphics.
- Partitions space by recursive subdivision.
- Properties
 - Three-dimensional
 - Extends a quadtree by using three orthogonal planes to subdivide a space into 8 children.
- Supports (where needed!)
 - Non-uniform subdivision
 - Tight bounding volumes
 - Overlapping children


Quadtrees

- Partitions space by recursive subdivision.
- Properties
 - Two-dimensional
 - Each node has exactly 4 children.
 - Regions may be square, rectangular, or even arbitrary shapes.
- Further optimizations
 - Bounding volumes around each child.
 - Efficient for sparse data sets.
 - "Loose" quadtrees
 - Children overlap, but coherence is preserved.
 - Useful to prevent specific 3D models from being split across partitions.



K H R O S O C S

Quadtrees

Quadtree with tight bounding volumes

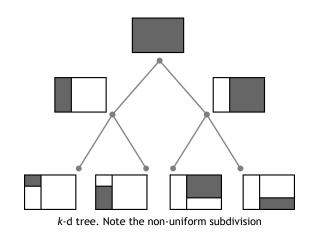
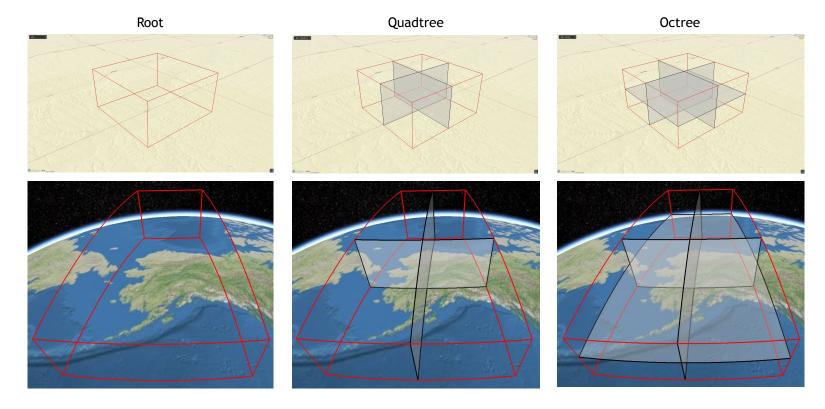

Quadtree with overlapping partitions

Image Sources: https://github.com/CesiumGS/3d-tiles/blob/draft-1.1/specification/README.adoc#spatial-data-structures

k-d trees

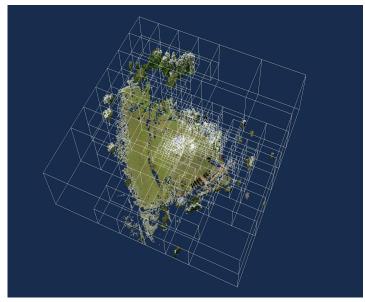
- Useful for subdividing sparse and non-uniform data sets.
- Properties
 - Binary tree where every node is a k-dimensional point in space.
 - Every node implicitly generates a hyperplane that divides space into two partitions called "half-spaces".
 - Has non-uniform subdivision, allowing a more balanced tree for sparse and non-uniform data sets.
- "The Curse of Dimensionality"
 - Largely irrelevant, since *k* is generally 2 or 3 in graphics.
- Further optimizations
 - Multi-way k-d trees

http://www.crs4.it/vic/cgi-bin/bib-page.cgi?id=%27Goswami:2013:EMF%27



You can use a combination of methods!

Combining methods


Bounding Volume Subdivision

Combining methods

Choose the right subdivision

Octree in local coordinates
3D Tiles from terrestrial Lidar scan

Data source: Trimble

Quadtree in global coordinates NYC buildings

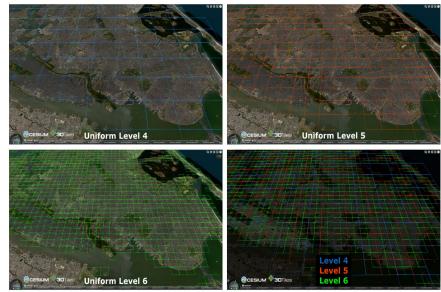
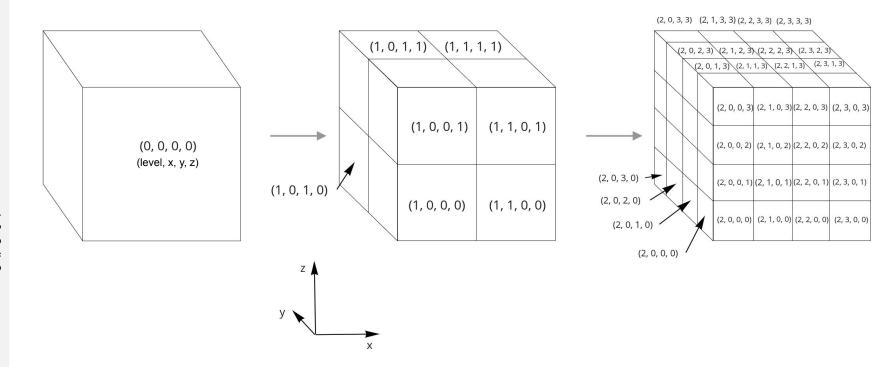
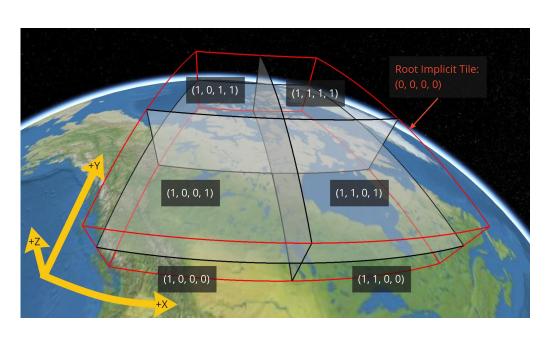


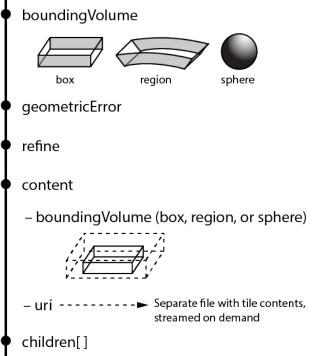
Figure 13. Bounding boxes for New York using Uniform Grid Tiling. Top Left: Uniform Level 4. Top Right: Uniform Level 5. Bottom Left: Uniform Level 6. Bottom Right: Composited view of Uniform Levels 4, 5, 6 for comparison.

Combining methods


Choose the right subdivision

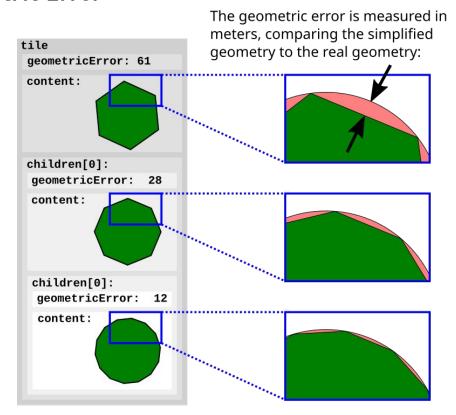
Combining methods

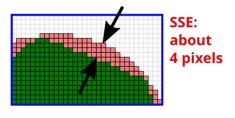

Handling coordinates: Box Bounding Volumes

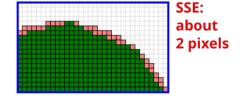


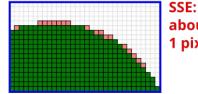
Combining methods

Handling coordinates: Region Bounding Volumes

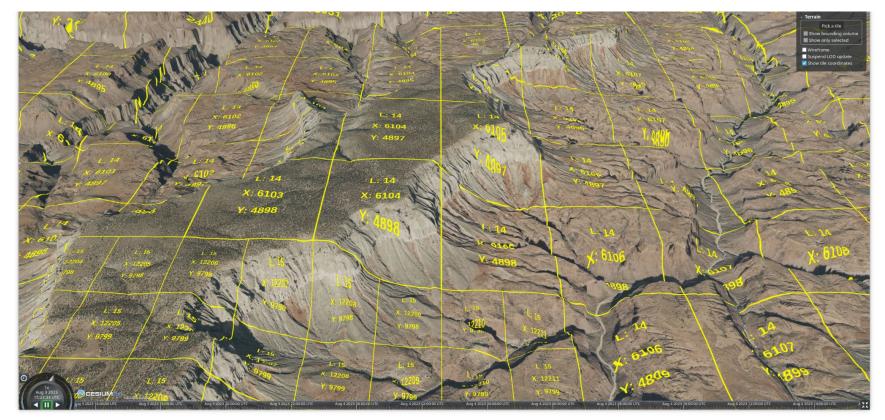

tile

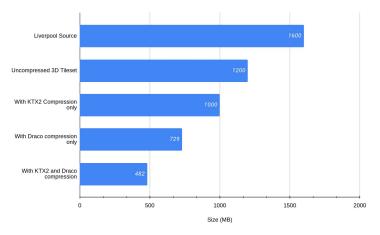

*S 0 2 0 2 0 2 0


Combining methods


Geometric Error

The screen space error (SSE) is measured in pixels:




Combining methods

Mixing Levels of Detail

K H R O S

Putting it all together

Liverpool Source	1.6GB
Uncompressed 3D Tileset	1.2GB
With KTX2 Compression only	1.0GB
With Draco compression only	729MB
With KTX2 and Draco compression	482MB

Notable gITF Extensions

- Useful for glTF optimization
 - KHR draco mesh compression
 - KHR mesh quantization
 - EXT mesh gpu instancing
 - EXT meshopt compression

0

- Notable mentions
 - MSFT lod
 - Alternative method for adding Level of Detail to glTF files.
 - Lacks widespread support.

K H RON OS

Where to learn more?

- glTF
 - https://github.com/KhronosGroup/glTF
- 3D Tiles
 - You can use this for more than geospatial!
 - https://github.com/CesiumGS/3d-tiles
 - Community Projects
 - Vulkan Scene Graph loader for 3D Tiles
 - https://github.com/timoore/vsgCs
 - NASA-AMMOS 3D Tiles loader for three.js
 - https://github.com/NASA-AMMOS/3DTilesRendererJS
 - Reference Cards
 - https://github.com/CesiumGS/3d-tiles/tree/main/reference-cards
- Cesium
 - https://cesium.com/learn/
- CesiumJS, Cesium for Unreal, Cesium for Unity, and Cesium for Omniverse are all open-source!
 - CesiumJS: https://github.com/CesiumGS/cesium
 - Cesium for Unreal: https://github.com/CesiumGS/cesium-unreal
 - Cesium for Unity: https://github.com/CesiumGS/cesium-unity
 - Cesium for Omniverse: https://github.com/CesiumGS/cesium-omniverse

KHRON OS

Ask the speakers

Max Limper (DGG)

Pawel Nikiel (DGG)

Adam Morris (Cesium)

Andreas Vasilakis (Phasmatic)