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The Shading Language Landscape Today

• Shader codebases have become incredibly 

large & complex

• Developers need to deploy to many 

platforms

• Shader combinatorial explosion

• New graphics techniques & neural graphics 

discontinuity

• GLSL no longer innovating new language 

features
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Open-Source, Cross-Platform Compiler
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HLSL 2020
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Now at Khronos!
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Slang + Khronos = Developers Win

• Shading language diversity means more competition & innovation

• No single company controls the language, so it can evolve as developers need

For developers, by developers

• Community structure built from OSS best practices

• Any company or individual is welcome to become a contributor, not just Khronos members

• Decision-making and development in the open – you can join technical conversations today on 

Discord, or propose features directly to the repository.

• Slang developers make the decisions about what goes into the language, and you can become one

http://khr.io/slangdiscord
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Why Another Shading Language?

GLSL MSL WGSL HLSL

Actively Evolving NO YES YES YES YES

Modular Code Management NO NO NO NO YES

Converging with C++ NO YES NO YES NO*

Auto-diff / Neural Shading NO NO NO NO YES

Diverse Backend Targets NO NO NO
DXIL and 

SPIR-V
YES

Open-Source Compiler(s) YES NO YES YES YES

Open Governance YES NO YES NO YES

* Slang and HLSL are taking complementary evolutionary paths

HLSL will remain and evolve as a critically important shading language for many developers

Language diversity and choice is good for the graphics ecosystem! 
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Language Evolution
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Modern programming language

Learned from Legacy C++’s mistakes

C++ 17 (modules)

C++ 2x (concepts)

Slang

HLSL
HLSL 202y

Legacy C++
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What makes Slang special?

• Cross-compilation in Slang is easy and ergonomic

- a seamless way – integrated in one place

- tooling just works

• Automatic differentiation 

- unique among shading languages 

- starting to show up as a necessity 

- for most AI graphics work

• Proper solve for modularity, permutations, 

compile time explosion, and “string pasting”

- Drawing on advances from the broader language 

space, Slang addresses these issues with modules, 

generics, and interfaces
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Seamless Cross-Compilation in Slang

GLSL

• No need to chain together 

multiple libraries

• Tooling just works

• Produces human-readable code

HLSL

CUDA

C (CPU)

PyTorch

Optix

WGSL

MSL
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New in Slang: WGSL Support for WebGPU
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New in Slang: Metal Support

• Vertex, fragment, compute, mesh, and 

amplification shaders supported

- No ray tracing yet

• Automatic transformations performed for 

Metal legalization documented here

- Enables Slang to support some 

functionality even though a Metal 

equivalent doesn’t exist. E.g. combined 

samplers, pointer to vector element

• Debug & tooling compatibility w/ #line 

directives

https://shader-slang.com/slang/user-guide/metal-target-specific
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Slang Tooling

You can already use Slang with existing 

toolchains

- Step-through debugging in Renderdoc

- Shader inspection in Nsight

- Slang in Vulkan SDK 1.3.296.0 and above

Amazing autocomplete support

- Extensions for Visual Studio & VSCode 

provide IntelliSense support

- Language server module available for 

integration into other IDEs

- No other shading language offers 

something this cool

Step-through debugging in RenderDoc

IntelliSense / Language Server support in action
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Easily write & maintain differentiable code

• Differentiable functions power gradient 

descent solution approaches

- Slang brings automatic differentiation to 

languages optimized for GPU usage

- Developers can optionally provide custom 

derivatives for just the portions of a shader 

where it’s necessary – flexibility & control

- Autodiff support includes arbitrary control 

flow & dynamic dispatch
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Use Case: Gaussian Splatting

github.com/google/slang-gaussian-rasterization

• Slang implementation of the rasterizer 

from 3D Gaussian Splatting for Real-Time 

Rendering of Radiance Fields

- Kernel performance equivalent to hand-

written CUDA

1495 lines (Slang + Slang-torch version) vs. 

2414 lines (CUDA version)

http://github.com/google/slang-gaussian-rasterization
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
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Modules + Interfaces + Generics = Faster 

Compiles

• Compilation time

- Within 10% of glslc/dxc 

compilation times with 

monolithic code

- Modularized code can 

reduce time spent in 

front-end compilation

Skipped for 
module linking
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Modules

Provide separation of compilation and control over visibility
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Generics & Interfaces 

Interfaces make requirements 

explicit
Similar to Rust traits, Swift protocols, Haskell 

typeclasses …

Generics improve 

code maintainability
Allows Intellisense to provide 

accurate assistance

Faster front-end compilation 

time from reusing type 

checking results
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Switching to Slang isn’t Hard!

• Binary Size: 8mb uncompressed

- Wasm implementation 

compressed to 5MB

- No LLVM - we generate C++

- Includes all backends!

• Runtime performance

- Meet or beat handwritten code

- Even when using advanced features 

such as generics

● Valve migrated entire Source 2 HLSL codebase

● Slang in use in production

● Minimal changes (~10 lines) needed to compile 

existing shaders with Slang

● Slang is used by Aurora path tracing renderer, 

enables single-source ray tracing codebase

● Ray tracing support just worked!

● Slang shaders are open source & available to check 

out

https://github.com/Autodesk/Aurora/tree/main/Libraries/Aurora/Source/Shaders
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Templates port to generics

Some template code can be ported trivially to generics by replacing “template” with 

“__generic”

__generic<typename T> T selectValue(float inVal, T v0, T v1)
{

if (inVal <= 1.0)
return v0;

else
return v1;

}

template<typename T> T selectValue(float inVal, T v0, T v1)
{

if (inVal <= 1.0)
return v0;

else
return v1;

}
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Generics are templates, but better…
template<typename T>
int compute(T v)
{

return v.eval();
}

This is valid C++ but invalid Slang code.

The compiler cannot prove that T has the 

eval method.

interface IEvaluable
{

int eval();
}
__generic<typename T>
int compute(T v) where T:IEvaluable
{

return v.eval();
}

The solve is telling Slang your type 

constraints. This easily ifdefs:

#ifdef __slang
#    define WHERE(x) where x
#    define template __generic
#else
#    define WHERE(x)
#endif
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Generics surface errors while you type

Given: interface IEvaluable
{

int eval();
}
int compute<T>(T v)

where T:IEvaluable
{

return v.eval();
}

struct X
{

int eval() { return 0; }
}
struct Y : IEvaluable
{

int eval() { return 0; }
}

The amazing thing is this surfaces right in IDE as you type! I.e., you 

don’t have to compile:
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Try Slang in your Browser!
https://try.shader-slang.org/

LIVE DEMO

https://shader-slang.org/slang-playground/


How you can get involved today

• Join the Discord!

- 180 members and counting!

• File an issue or feature request

• Start a GitHub discussion

• Submit a pull request

• Become a committer!

https://khr.io/slangdiscord
https://khr.io/slangdiscord
https://github.com/shader-slang/slang/issues
https://github.com/shader-slang/slang/discussions
https://github.com/shader-slang/slang/blob/master/CONTRIBUTING.md
https://shader-slang.com/community/become-a-committer/
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Resources
• Slang resources 

- https://shader-slang.org/

• Open-source Slang Repo

- Accepting design proposal RFCs, Pull Requests, and Bug Reports

- https://github.com/shader-slang

• Discord Discussion Channels

- https://khr.io/slangdiscord

• Playground - try Slang in your browser

- https://try.shader-slang.org/

https://shader-slang.org/
https://github.com/shader-slang
https://khr.io/slangdiscord
https://try.shader-slang.org/
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Khronos BOFs at SIGGRAPH Asia

Day Time / Room Session Title Standards and Projects

Tuesday 3rd 1:00-2:00PM, G408 Khronos Fast Forward Vulkan, OpenXR, Slang, ANARI, glTF

Wednesday 4th 1:00-2:00PM, G407 Slang Shading Language Slang

Wednesday 4th 3:30-4:30PM, G407 Immersive Web with Khronos and W3C WebGL, WebXR, WebGPU, three.js

Thursday 5th 2:15-3:15PM, G407 OpenXR Update and Roadmap OpenXR

Thursday 5th 3:30-5:30PM, G407 Vulkan Update and Ecosystem Vulkan, Vulkan SC, Slang

Friday 6th 1:00-2:00PM, G408 glTF 3D Transmission Format glTF, VRM Avatar Format

Khronos Information
www.khronos.org

memberservices@khronosgroup.org

Khronos BOFs

All BOF slides and videos will be uploaded to the 

Khronos SIGGRAPH event page

http://www.khronos.org/
mailto:memberservices@khronosgroup.org
https://www.khronos.org/events/siggraph-asia-2024

	Slide 1: Slang and the 3D Shading Landscape
	Slide 2: The Shading Language Landscape Today
	Slide 3: Open-Source, Cross-Platform Compiler
	Slide 4: Slang + Khronos = Developers Win
	Slide 5: Why Another Shading Language?
	Slide 6: Language Evolution
	Slide 7: What makes Slang special?
	Slide 8: Seamless Cross-Compilation in Slang
	Slide 9: New in Slang: WGSL Support for WebGPU
	Slide 10: New in Slang: Metal Support
	Slide 11: Slang Tooling
	Slide 12: Easily write & maintain differentiable code
	Slide 13: Use Case: Gaussian Splatting
	Slide 14: Modules + Interfaces + Generics = Faster Compiles
	Slide 15: Modules
	Slide 16: Generics & Interfaces 
	Slide 17: Switching to Slang isn’t Hard!
	Slide 18: Templates port to generics
	Slide 19: Generics are templates, but better…
	Slide 20: Generics surface errors while you type
	Slide 21: Try Slang in your Browser!
	Slide 22: How you can get involved today
	Slide 23: Resources
	Slide 24: Khronos BOFs at SIGGRAPH Asia

