
Slang and the 3D Shading Landscape

Shannon Woods, NVIDIA

© The Khronos® Group Inc. 2024 - Page 2This work is licensed under a Creative Commons Attribution 4.0 International License

The Shading Language Landscape Today

• Shader codebases have become incredibly

large & complex

• Developers need to deploy to many

platforms

• Shader combinatorial explosion

• New graphics techniques & neural graphics

discontinuity

• GLSL no longer innovating new language

features

© The Khronos® Group Inc. 2024 - Page 3This work is licensed under a Creative Commons Attribution 4.0 International License

Open-Source, Cross-Platform Compiler

GLSL

Slang

HLSL

CUDA

C (CPU)

PyTorch

Optix

WGSL

GLSL

HLSL 2020

MSL

Now at Khronos!

© The Khronos® Group Inc. 2024 - Page 4This work is licensed under a Creative Commons Attribution 4.0 International License

Slang + Khronos = Developers Win

• Shading language diversity means more competition & innovation

• No single company controls the language, so it can evolve as developers need

For developers, by developers

• Community structure built from OSS best practices

• Any company or individual is welcome to become a contributor, not just Khronos members

• Decision-making and development in the open – you can join technical conversations today on

Discord, or propose features directly to the repository.

• Slang developers make the decisions about what goes into the language, and you can become one

http://khr.io/slangdiscord

© The Khronos® Group Inc. 2024 - Page 5This work is licensed under a Creative Commons Attribution 4.0 International License

Why Another Shading Language?

GLSL MSL WGSL HLSL

Actively Evolving NO YES YES YES YES

Modular Code Management NO NO NO NO YES

Converging with C++ NO YES NO YES NO*

Auto-diff / Neural Shading NO NO NO NO YES

Diverse Backend Targets NO NO NO
DXIL and

SPIR-V
YES

Open-Source Compiler(s) YES NO YES YES YES

Open Governance YES NO YES NO YES

* Slang and HLSL are taking complementary evolutionary paths

HLSL will remain and evolve as a critically important shading language for many developers

Language diversity and choice is good for the graphics ecosystem!

© The Khronos® Group Inc. 2024 - Page 6This work is licensed under a Creative Commons Attribution 4.0 International License

Language Evolution

L
a
n
g
u
a
g
e
 m

o
d
e
rn

it
y

Time

Modern programming language

Learned from Legacy C++’s mistakes

C++ 17 (modules)

C++ 2x (concepts)

Slang

HLSL
HLSL 202y

Legacy C++

© The Khronos® Group Inc. 2024 - Page 7This work is licensed under a Creative Commons Attribution 4.0 International License

What makes Slang special?

• Cross-compilation in Slang is easy and ergonomic

- a seamless way – integrated in one place

- tooling just works

• Automatic differentiation

- unique among shading languages

- starting to show up as a necessity

- for most AI graphics work

• Proper solve for modularity, permutations,

compile time explosion, and “string pasting”

- Drawing on advances from the broader language

space, Slang addresses these issues with modules,

generics, and interfaces

© The Khronos® Group Inc. 2024 - Page 8This work is licensed under a Creative Commons Attribution 4.0 International License

Seamless Cross-Compilation in Slang

GLSL

• No need to chain together

multiple libraries

• Tooling just works

• Produces human-readable code

HLSL

CUDA

C (CPU)

PyTorch

Optix

WGSL

MSL

© The Khronos® Group Inc. 2024 - Page 9This work is licensed under a Creative Commons Attribution 4.0 International License

New in Slang: WGSL Support for WebGPU

© The Khronos® Group Inc. 2024 - Page 10This work is licensed under a Creative Commons Attribution 4.0 International License

New in Slang: Metal Support

• Vertex, fragment, compute, mesh, and

amplification shaders supported

- No ray tracing yet

• Automatic transformations performed for

Metal legalization documented here

- Enables Slang to support some

functionality even though a Metal

equivalent doesn’t exist. E.g. combined

samplers, pointer to vector element

• Debug & tooling compatibility w/ #line

directives

https://shader-slang.com/slang/user-guide/metal-target-specific

© The Khronos® Group Inc. 2024 - Page 11This work is licensed under a Creative Commons Attribution 4.0 International License

Slang Tooling

You can already use Slang with existing

toolchains

- Step-through debugging in Renderdoc

- Shader inspection in Nsight

- Slang in Vulkan SDK 1.3.296.0 and above

Amazing autocomplete support

- Extensions for Visual Studio & VSCode

provide IntelliSense support

- Language server module available for

integration into other IDEs

- No other shading language offers

something this cool

Step-through debugging in RenderDoc

IntelliSense / Language Server support in action

© The Khronos® Group Inc. 2024 - Page 12This work is licensed under a Creative Commons Attribution 4.0 International License

Easily write & maintain differentiable code

• Differentiable functions power gradient

descent solution approaches

- Slang brings automatic differentiation to

languages optimized for GPU usage

- Developers can optionally provide custom

derivatives for just the portions of a shader

where it’s necessary – flexibility & control

- Autodiff support includes arbitrary control

flow & dynamic dispatch

© The Khronos® Group Inc. 2024 - Page 13This work is licensed under a Creative Commons Attribution 4.0 International License

Use Case: Gaussian Splatting

github.com/google/slang-gaussian-rasterization

• Slang implementation of the rasterizer

from 3D Gaussian Splatting for Real-Time

Rendering of Radiance Fields

- Kernel performance equivalent to hand-

written CUDA

1495 lines (Slang + Slang-torch version) vs.

2414 lines (CUDA version)

http://github.com/google/slang-gaussian-rasterization
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/

© The Khronos® Group Inc. 2024 - Page 14This work is licensed under a Creative Commons Attribution 4.0 International License

Modules + Interfaces + Generics = Faster

Compiles

• Compilation time

- Within 10% of glslc/dxc

compilation times with

monolithic code

- Modularized code can

reduce time spent in

front-end compilation

Skipped for
module linking

© The Khronos® Group Inc. 2024 - Page 15This work is licensed under a Creative Commons Attribution 4.0 International License

Modules

Provide separation of compilation and control over visibility

© The Khronos® Group Inc. 2024 - Page 16This work is licensed under a Creative Commons Attribution 4.0 International License

Generics & Interfaces

Interfaces make requirements

explicit
Similar to Rust traits, Swift protocols, Haskell

typeclasses …

Generics improve

code maintainability
Allows Intellisense to provide

accurate assistance

Faster front-end compilation

time from reusing type

checking results

© The Khronos® Group Inc. 2024 - Page 17This work is licensed under a Creative Commons Attribution 4.0 International License

Switching to Slang isn’t Hard!

• Binary Size: 8mb uncompressed

- Wasm implementation

compressed to 5MB

- No LLVM - we generate C++

- Includes all backends!

• Runtime performance

- Meet or beat handwritten code

- Even when using advanced features

such as generics

● Valve migrated entire Source 2 HLSL codebase

● Slang in use in production

● Minimal changes (~10 lines) needed to compile

existing shaders with Slang

● Slang is used by Aurora path tracing renderer,

enables single-source ray tracing codebase

● Ray tracing support just worked!

● Slang shaders are open source & available to check

out

https://github.com/Autodesk/Aurora/tree/main/Libraries/Aurora/Source/Shaders

© The Khronos® Group Inc. 2024 - Page 18This work is licensed under a Creative Commons Attribution 4.0 International License

Templates port to generics

Some template code can be ported trivially to generics by replacing “template” with

“__generic”

__generic<typename T> T selectValue(float inVal, T v0, T v1)
{

if (inVal <= 1.0)
return v0;

else
return v1;

}

template<typename T> T selectValue(float inVal, T v0, T v1)
{

if (inVal <= 1.0)
return v0;

else
return v1;

}

© The Khronos® Group Inc. 2024 - Page 19This work is licensed under a Creative Commons Attribution 4.0 International License

Generics are templates, but better…
template<typename T>
int compute(T v)
{

return v.eval();
}

This is valid C++ but invalid Slang code.

The compiler cannot prove that T has the

eval method.

interface IEvaluable
{

int eval();
}
__generic<typename T>
int compute(T v) where T:IEvaluable
{

return v.eval();
}

The solve is telling Slang your type

constraints. This easily ifdefs:

#ifdef __slang
define WHERE(x) where x
define template __generic
#else
define WHERE(x)
#endif

© The Khronos® Group Inc. 2024 - Page 20This work is licensed under a Creative Commons Attribution 4.0 International License

Generics surface errors while you type

Given: interface IEvaluable
{

int eval();
}
int compute<T>(T v)

where T:IEvaluable
{

return v.eval();
}

struct X
{

int eval() { return 0; }
}
struct Y : IEvaluable
{

int eval() { return 0; }
}

The amazing thing is this surfaces right in IDE as you type! I.e., you

don’t have to compile:

© The Khronos® Group Inc. 2024 - Page 21This work is licensed under a Creative Commons Attribution 4.0 International License

Try Slang in your Browser!
https://try.shader-slang.org/

LIVE DEMO

https://shader-slang.org/slang-playground/

How you can get involved today

• Join the Discord!

- 180 members and counting!

• File an issue or feature request

• Start a GitHub discussion

• Submit a pull request

• Become a committer!

https://khr.io/slangdiscord
https://khr.io/slangdiscord
https://github.com/shader-slang/slang/issues
https://github.com/shader-slang/slang/discussions
https://github.com/shader-slang/slang/blob/master/CONTRIBUTING.md
https://shader-slang.com/community/become-a-committer/

© The Khronos® Group Inc. 2024 - Page 23This work is licensed under a Creative Commons Attribution 4.0 International License

Resources
• Slang resources

- https://shader-slang.org/

• Open-source Slang Repo

- Accepting design proposal RFCs, Pull Requests, and Bug Reports

- https://github.com/shader-slang

• Discord Discussion Channels

- https://khr.io/slangdiscord

• Playground - try Slang in your browser

- https://try.shader-slang.org/

https://shader-slang.org/
https://github.com/shader-slang
https://khr.io/slangdiscord
https://try.shader-slang.org/

© The Khronos® Group Inc. 2024 - Page 24This work is licensed under a Creative Commons Attribution 4.0 International License

Khronos BOFs at SIGGRAPH Asia

Day Time / Room Session Title Standards and Projects

Tuesday 3rd 1:00-2:00PM, G408 Khronos Fast Forward Vulkan, OpenXR, Slang, ANARI, glTF

Wednesday 4th 1:00-2:00PM, G407 Slang Shading Language Slang

Wednesday 4th 3:30-4:30PM, G407 Immersive Web with Khronos and W3C WebGL, WebXR, WebGPU, three.js

Thursday 5th 2:15-3:15PM, G407 OpenXR Update and Roadmap OpenXR

Thursday 5th 3:30-5:30PM, G407 Vulkan Update and Ecosystem Vulkan, Vulkan SC, Slang

Friday 6th 1:00-2:00PM, G408 glTF 3D Transmission Format glTF, VRM Avatar Format

Khronos Information
www.khronos.org

memberservices@khronosgroup.org

Khronos BOFs

All BOF slides and videos will be uploaded to the

Khronos SIGGRAPH event page

http://www.khronos.org/
mailto:memberservices@khronosgroup.org
https://www.khronos.org/events/siggraph-asia-2024

	Slide 1: Slang and the 3D Shading Landscape
	Slide 2: The Shading Language Landscape Today
	Slide 3: Open-Source, Cross-Platform Compiler
	Slide 4: Slang + Khronos = Developers Win
	Slide 5: Why Another Shading Language?
	Slide 6: Language Evolution
	Slide 7: What makes Slang special?
	Slide 8: Seamless Cross-Compilation in Slang
	Slide 9: New in Slang: WGSL Support for WebGPU
	Slide 10: New in Slang: Metal Support
	Slide 11: Slang Tooling
	Slide 12: Easily write & maintain differentiable code
	Slide 13: Use Case: Gaussian Splatting
	Slide 14: Modules + Interfaces + Generics = Faster Compiles
	Slide 15: Modules
	Slide 16: Generics & Interfaces
	Slide 17: Switching to Slang isn’t Hard!
	Slide 18: Templates port to generics
	Slide 19: Generics are templates, but better…
	Slide 20: Generics surface errors while you type
	Slide 21: Try Slang in your Browser!
	Slide 22: How you can get involved today
	Slide 23: Resources
	Slide 24: Khronos BOFs at SIGGRAPH Asia

