

Khronos Fast Forward

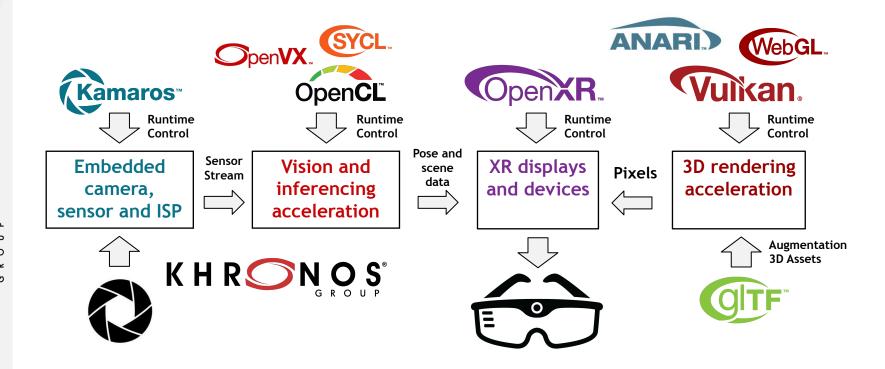
Neil Trevett Khronos President and VP Developer Ecosystems at NVIDIA

K H R O S

Khronos Connects Software to Silicon

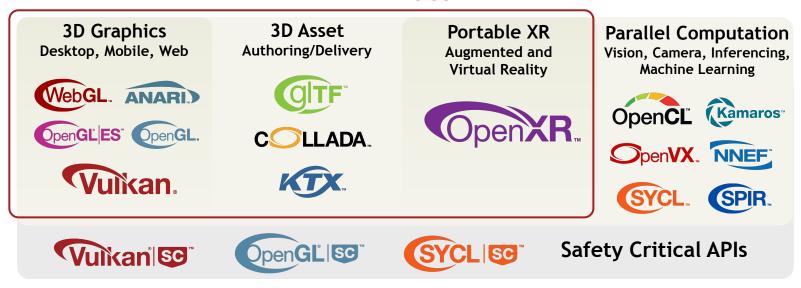
Open, royalty-free interoperability standards to harness the power of GPU, XR and multiprocessor hardware

3D graphics, augmented and virtual reality, parallel programming, inferencing and vision acceleration


Non-profit, member-driven standards organization, open to any company

Proven multi-company governance and Intellectual Property Framework

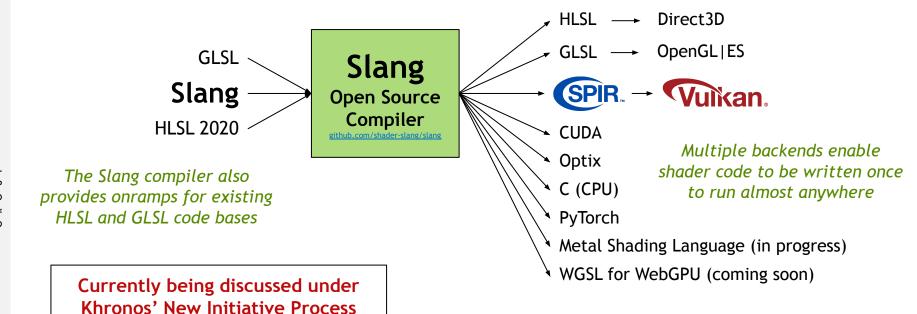
Founded in 2000 ~ 200 Members | ~ 40% US, 30% Europe, 30% Asia


KHRON OS

Khronos Standards for Spatial Computing

Khronos Active Standards

Khronos standards most relevant at SIGGRAPH

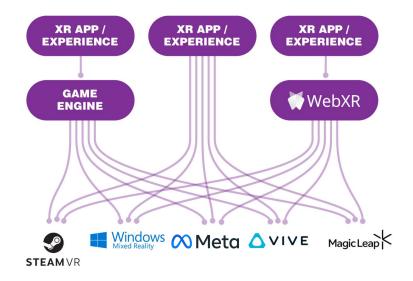


NEW! New Initiative under discussion - Slang Shading language

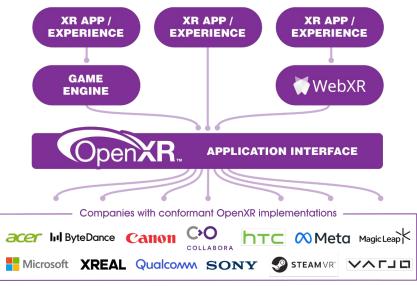
NVIDIA has proposed to bring Slang to Khronos

Slang is a fast-moving language designed specifically to meet the evolving needs of real-time rendering applications - including neural shaders

'Slang in Vulkan' presentation at the Vulkan BOF - 3PM Wednesday


OpenXR

Empowering Cross-Platform Immersive Experiences


Neil Trevett NVIDIA

K H R O S

OpenXR Cross-Platform Portability

Before OpenXR: Applications and engines needed separate proprietary code for each device on the market.

OpenXR provides a single cross-platform, high-performance API between applications and all conformant devices.

Applications and engines can portably access any OpenXR-conformant hardware

Conformant OpenXR Devices

Microsoft		htc
HoloLens and Mixed Reality Headsets. Hand and eye tracking extensions	Rift S, Quest 3, Quest 2 and Quest Pro Meta Deprecated own API for OpenXR	Vive Focus 3, Vive Cosmos, Vive XR Elite, Vive Wave Runtime
VALVE	↑ 	Canon
Valve Index Valve Deprecated OpenVR APIs for OpenXR	All Varjo Headsets are fully compliant XR-3, XR-4	MREAL X1
Magic Leap K	XREAL	Snapdragon spaces
Magic Leap 2	XREAL Air 2, Air 2 Pro, Air 2 Ultra	Qualcomm Snapdragon Spaces XR Development Platform
acer	PICO ByteDance	SONY
Spatial Labs Display Series	Neo 3 and Pico 4	Spatial Reality Displays

The OpenXR Story So Far...

Empowering Cross-platform Immersive Experiences

OpenXR 1.1

Consolidates multiple extensions to streamline application development and reduce fragmentation Adds new functionality with spec improvements

Vendor Proprietary

Though inc

API fragmentation
Clear industry demand need for a
cross-platform XR open standard

Establishing baseline XR functionality

Though industry consensus and contributed designs

OpenXR 1.0 specification drafted

OpenXR achieves wide industry adoption

OpenXR is foundation for experimentation

New functionality introduced through extensions

Increased focus on regular core spec updates

Balancing the need to ship new functionality AND consolidate widely proven technology

Leverage OpenXR's flexible design to explore new use cases

e.g., body tracking and advanced spatial computing

OpenXR Working Group Formed

OpenXR 1.0 Released

OpenXR 1. Released

2017 2019 April 2024

OpenXR 1.1 Key Extensions Promoted to Core

- Local Floor Reference Space
 - Gravity-aligned world-locked origin for standing-scale content
 - Estimated floor height built in
 - Recenter to current user position at the press of a button without a calibration procedure
- Grip Surface
 - Anchors visual content relative to the user's physical hand
 - Can be tracked directly or inferred from a physical controller's position and orientation
- Stereo with Foveated Rendering for XR headsets
 - Runtimes MAY optionally expose eye-tracked or fixed foveated rendering
 - Portable across multiple graphics rendering APIs
- Additional enhancements
 - Interaction Profile improvements
 - Spec language cleanup and clarifications

Engines, Browsers, and Libraries with OpenXR

UNREAL	Unity	GODOT Game engine
Unreal has been providing support since 4.24. UE 5.0 supports OpenXR	Unity's OpenXR plugin available since 2020 LTS	Godot provides OpenXR support since March 2023 (Core 4.0 Alpha 4)
AUTODESK VRED Library	NVIDIA OMNIVERSE CLOUDXR	
OpenXR supported since VRED 2023.4	NVIDIA Omniverse and CloudXR Platforms	WebXR in Chrome, Edge, and Firefox uses OpenXR as the default backend
COLLABORA MONADO	Meta	stereokit
Open-source OpenXR Implementation	A lightweight XR Meta XR Simulator to Speed Unity OpenXR Development	Open-source mixed reality library for building HoloLens and VR applications

E S

Khronos and W3C: Bringing XR to the Web

XR Applications and Engines use an API from both the 3D and XR Stacks

three.js

Engines

3D Stack
Driving GPUs to render scenes and augmentations

XR Stack
Handling XR Devices for creating UI

Coming Soon...

- Extending hand tracking
 - To include full body tracking

'Slang in Vulkan' presentation at the Vulkan BOF - 3PM Wednesday

- Enhanced handling of spatial entities
 - Standardized methods to interact with the user's environment
 - Support for advanced spatial computing applications
- Expanded haptics support
 - Support immersive experiences through PCM, vibrotractiles, and transients
- Controller render models (glTF)
 - Showing and animating a model of the user's actual controller

OpenXR Specification

OpenXR SDK GitHub

Vulkan: Forging Ahead!

(fast forward version)

Tom Olson (Arm), Vulkan Working Group chair

Ten years ago, in a city far, far away...

OpenGL / OpenGL ES BOF, SIGGRAPH 2014

Vulkan BOF Presentations

Vulkan: Looking back, and looking forward

Tom Olson (Vulkan Working Group Chair / Arm)

Vulkan SDK: Where we started, and where we are going

Karen Ghavam (LunarG)

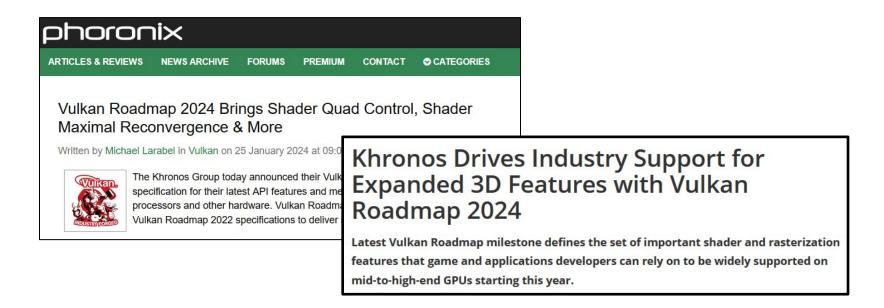
Vulkan: Crash Diagnostic Layer

Jeremy Gebben (LunarG)

Slang in Vulkan

- Hai Nguyen (NVIDIA)

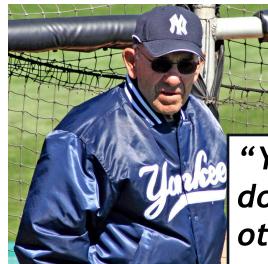
EVOLVE - Next Generation Benchmarking


Jasper Bekkers and Darius Bouma (Traverse Research)

Adding Vulkan to Pixar's Hydra Storm Renderer

Henrik Edstrom (Autodesk), Ashwin Bhat (Autodesk), and Caroline Lachanski (Pixar)

K H R O S


Vulkan Roadmap 2024 Profile

Represents the second milestone on the Vulkan Roadmap

- Captures expected feature set for "immersive graphics" 2024-2026+

Vulkan Roadmap 2026 Milestone

"You've got to be very careful if you don't know where you're going, otherwise you might not get there"

- Yogi Berra

Our plans for the third milestone on the Vulkan Roadmap

Vulkan BOF Presentations

Vulkan: Looking back, and looking forward

Tom Olson (Vulkan Working Group Chair / Arm)

Vulkan SDK: Where we started, and where we are going

Karen Ghavam (LunarG)

Vulkan: Crash Diagnostic Layer

- Jeremy Gebben (LunarG)

Slang in Vulkan

Hai Nguyen (NVIDIA)

EVOLVE - Next Generation Benchmarking

Jasper Bekkers and Darius Bouma (Traverse Research)

Adding Vulkan to Pixar's Hydra Storm Renderer

- Henrik Edstrom (Autodesk), Ashwin Bhat (Autodesk), and Caroline Lachanski (Pixar)

Shading Languages: it's complicated...

Vulkan is defined to accept shaders in the SPIR-V IR

- In theory, how you generate it is up to you
- But, the ecosystem needs standards and stability

Shading Languages: it's complicated...

Vulkan is defined to accept shaders in the SPIR-V IR

- In theory, how you generate it is up to you
- But, the ecosystem needs standards and stability

GLSL is NOT going away - will live forever

- But no plan to evolve its syntax (templates, meta-programming, etc.

KHRON COUP

Shading Languages: it's complicated...

Vulkan is defined to accept shaders in the SPIR-V IR

- In theory, how you generate it is up to you
- But, the ecosystem needs standards and stability

GLSL is NOT going away - will live forever

- But no plan to evolve its syntax (templates, meta-programming, etc.

Some developers will always prefer HLSL

- Microsoft has been very welcoming and accommodating thanks!
- Resourcing is a problem

KHRON OS

Shading Languages: it's complicated...

Vulkan is defined to accept shaders in the SPIR-V IR

- In theory, how you generate it is up to you
- But, the ecosystem needs standards and stability

GLSL is NOT going away - will live forever

- But no plan to evolve its syntax (templates, meta-programming, etc.

Some developers will always prefer HLSL

- Microsoft has been very welcoming and accommodating thanks!
- Resourcing is a problem

Slang is an option

- NVIDIA has offered to place it under community governance
- Khronos is one possible hosting consortium under discussion

Vulkan BOF Presentations

Vulkan: Looking back, and looking forward

Tom Olson (Vulkan Working Group Chair / Arm)

Vulkan SDK: Where we started, and where we are going

Karen Ghavam (LunarG)

Vulkan: Crash Diagnostic Layer

Jeremy Gebben (LunarG)

Slang in Vulkan

- Hai Nguyen (NVIDIA)

EVOLVE - Next Generation Benchmarking

Jasper Bekkers and Darius Bouma (Traverse Research)

Adding Vulkan to Pixar's Hydra Storm Renderer

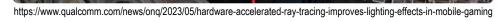
- Henrik Edstrom (Autodesk), Ashwin Bhat (Autodesk), and Caroline Lachanski (Pixar)

Vulkan Video is a Thing!

- Vulkan Video expands Vulkan capabilities
 - Accelerated processing of streamed media into the Vulkan pipeline

Vulkan Video is increasingly providing cross-platform media framework acceleration

Status tracked at


https://blogs.igalia.com/vjaquez/vulkan-video-status/

Ray tracing in Mobile is a Thing too!

Qualcomm

arm

Ray Tracing On

Ray Tracing Off

KHRON OS

Vulkan BOF Presentations

Vulkan: Looking back, and looking forward

Tom Olson (Vulkan Working Group Chair / Arm)

Vulkan SDK: Where we started, and where we are going

Karen Ghavam (LunarG)

Vulkan: Crash Diagnostic Layer

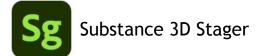
Jeremy Gebben (LunarG)

Slang in Vulkan

- Hai Nguyen (NVIDIA)

EVOLVE - Next Generation Benchmarking

Jasper Bekkers and Darius Bouma (Traverse Research)


Adding Vulkan to Pixar's Hydra Storm Renderer

- Henrik Edstrom (Autodesk), Ashwin Bhat (Autodesk), and Caroline Lachanski (Pixar)

Professional Rendering

Artwork by Emily Bisset, courtesy of Adobe

Vulkan BOF Presentations

Vulkan: Looking back, and looking forward

Tom Olson (Vulkan Working Group Chair / Arm)

Vulkan SDK: Where we started, and where we are going

Karen Ghavam (LunarG)

Vulkan: Crash Diagnostic Layer

Jeremy Gebben (LunarG)

Slang in Vulkan

Hai Nguyen (NVIDIA)

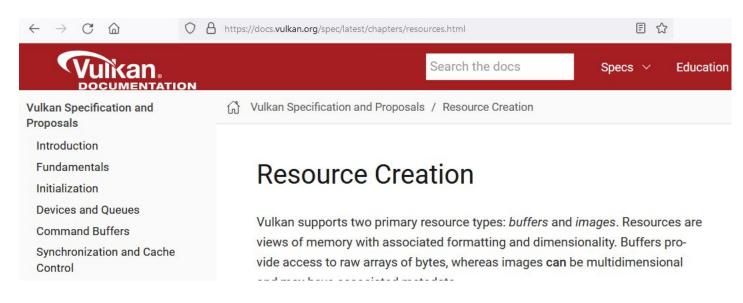
EVOLVE - Next Generation Benchmarking

- Jasper Bekkers and Darius Bouma (Traverse Research)

Adding Vulkan to Pixar's Hydra Storm Renderer

- Henrik Edstrom (Autodesk), Ashwin Bhat (Autodesk), and Caroline Lachanski (Pixar)

What's New:


Documentation and Developer Support

K H RON OS

Vulkan Documentation Project

Bring Vulkan documentation together in one place

- Specification, Vulkan Guide, Proposal documents, Samples...
- Easy navigation and cross-linking
- https://docs.vulkan.org
- Please report issues at https://github.com/KhronosGroup/Vulkan-Site

K H R O S


Vulkan Samples Repository

A home for Vulkan sample code

- Intended to help you learn to use Vulkan effectively
- GPU, OS, and platform neutral, well tested
- On github in open source (Apache 2.0)
- Access via docs. Vulkan.org or at github/KhronosGroup/Vulkan-Samples

A community effort

- Khronos member ISVs, IHVs, contractors
- Interested community members

K H R O S O S

Some recently added samples

Sparse Image / virtual texture (Mobica)

OIT using per-pixel linked lists (community)

Mobile NeRF (Qualcomm)

https://developer.qualcomm.com/blog/generating-3d-scenes-2d-images -more-efficiently-mobile-nerf-rendering-using-vulkan-adreno-gpu

H RON ON S

Vulkanised!

First full-scale Vulkanised was held in February 2023

- Hosted by Google in Munich, Germany
- Three days of talks, panels, demos, and a Vulkan course
 - All on line at https://vulkan.org/learn#videos

Second in February 2024

- Hosted by Google in Sunnyvale, California

K H RON OS

Vulkanised 2025

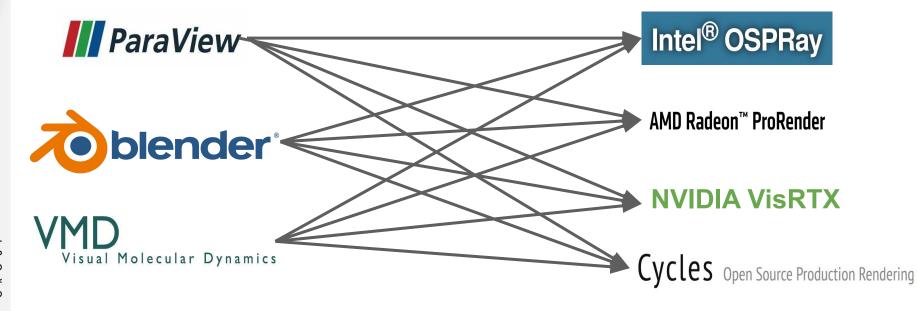
Vulkanised 2025

The 7th Vulkan Conference | Cambridge, UK | Feb 11-13, 2025

The Premier Vulkan Developer Conference

To be hosted by Arm in Cambridge, UK - submissions due Oct. 11

Thanks!



ANARI

Jeff Amstutz NVIDIA

3D APPLICATIONS

RENDERING ENGINES

3D APPLICATIONS

• • •

RENDERING ENGINES

AMD Radeon™ ProRender

NVIDIA VisRTX

Cycles Open Source Production Rendering

• •

K H R O S O C P O

API Design: Balancing Opposing Forces

API Uniformity

Handle-based Objects

Generic Parameters + Arrays

Object/Array Updates

Scene Hierarchy

Concurrency + Parallelism

API Synchronization Semantics

Graphics/Compute API Interop

Feature Differentiation

Supported API Extensions

Performance (Frame/Update Latencies)

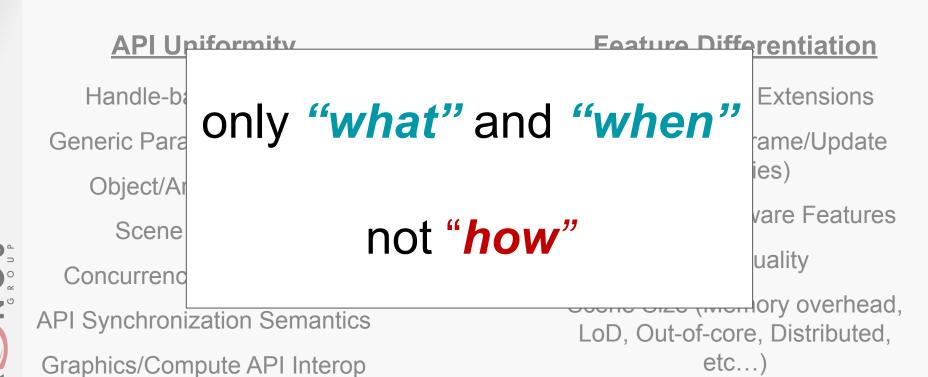
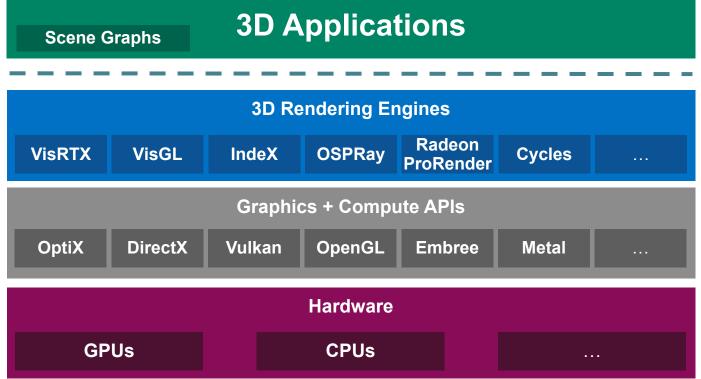
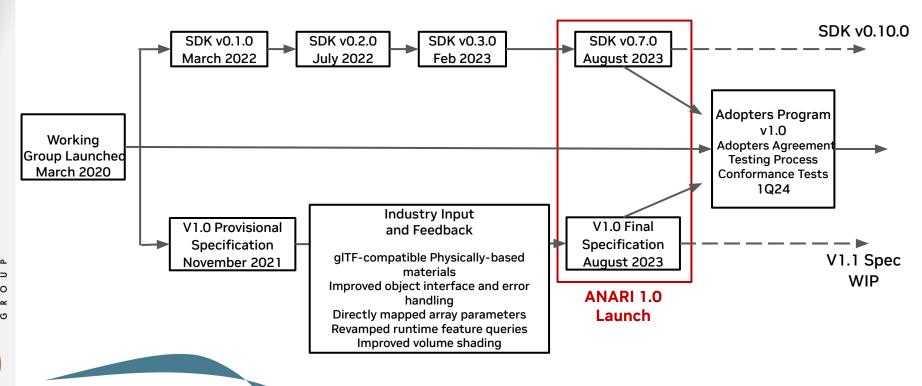

Supported Hardware Features

Image Quality

Scene Size (Memory overhead, LoD, Out-of-core, Distributed, etc...)


. . .

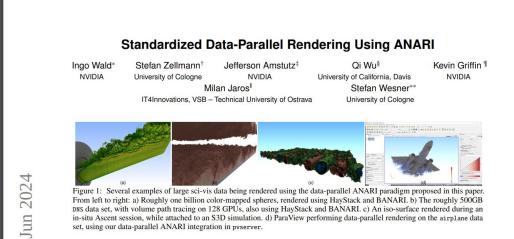
API Design: Balancing Opposing Forces



ANARI Development Stack

Open-source SDK includes Conformance Test code

All specification, SDK and Conformance Test


development work done publicly on GitHub

K H R O S O S

ANARI

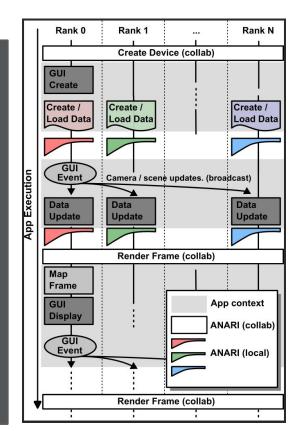
Data Parallel Rendering

DNS data set, with volume path tracing on 128 GPUs, also using HayStack and BANARI. c) An iso-surface rendered during an

in-situ Ascent session, while attached to an S3D simulation. d) ParaView performing data-parallel rendering on the airplane data

ABSTRACT

We propose and discuss a paradigm that allows for expressing dataparallel rendering with the classically non-parallel ANARI API. We propose this as a new standard for data-parallel sci-vis rendering. describe two different implementations of this paradigm, and use multiple sample integrations into existing apps to show how easy it is to adopt this paradigm, and what can be gained from doing so.


set, using our data-parallel ANARI integration in pyserver.

1 INTRODUCTION

Visualization is about more than rendering, but rendering nevertheless plays a large role in many vis tools. Rendering is hard: it was already a hard problem when all such tools could rely on a single common API (e.g. OpenGL); today, it is further complicated

involved in rendering, such as cameras or data arrays containing geometry, materials, colors, etc. These objects ultimately represent a generic interface to the private implementation of the back-end, where the mechanics of rendering frames is left up to the implemen-

ANARI is not a silver bullet, though. Even with a single agreedupon API, different implementations can and will still differ in what features exactly they will support (and in which form). Thus, applications still need to be aware of which specific implementation they may be running on-and either adopt a least common denominator approach, or have some application features only available from specific ANARI vendors. Still, this standardization is encouraging as ANARI is already seeing adoption even in VTK and VTK-m, and

Updates Since SIGGRAPH 2023

- New Adopters Program
 - Help secure future ANARI SDK development through official conformance!
 - Improved Conformance Test Suite (with more on the way!)
- Many SDK Improvements + Additions:
 - Initial version of an OpenUSD Hydra plugin 'hdAnari' now available
 - New Blender add-on contributions welcome!
 - Application debug layer can be enabled without code changes
 - Helium now provides a generic host-side array implementation
- New Implementations and Integrations coming online
 - New applications: OVITO, Ascent | Improved integrations: VTK, VTK-m, ParaView, VisIt
 - New devices: Visionaray (CPU/CUDA), Barney (OptiX + MPI parallel), Cycles (prototype),...

Lots more detail at the 'Exploring ANARI' BOF 10AM Wednesday



glTF & 3D Commerce

Alexey Medvedev Meta

K H R O S O C P O

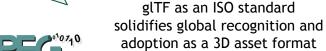
glTF - 3D Asset Transmission Format

K H RON

Increasingly Foundational for Other Standards

Customized interactive 3D avatar format based on glTF + extensions (.vrm extension)

Streamlined streaming and rendering large-scale 3D geospatial datasets uses glTF + extensions (.b3dm and .i3dm extensions)



ISO/TS 32007 brings glTF 2.0 as a supported 3D asset into PDF

ISO/IEC IS 19775-1:2023 (X3D)

MPEG-I for immersive media experience uses glTF + extensions as its scene graph (.mp4 extension)

ISO/IEC 23090-14:2023

MPEG-I for immersive media experience uses glTF + extensions as its scene graph

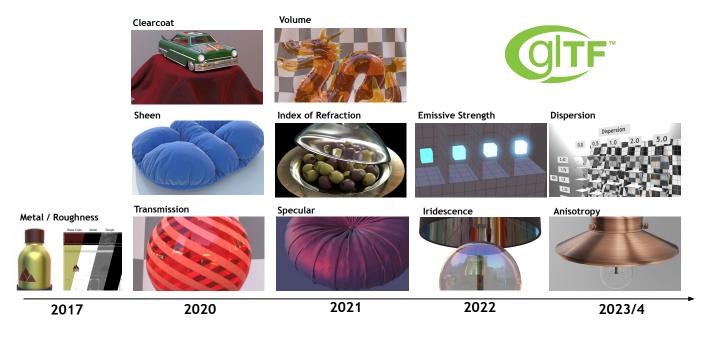
(.mp4 extension)

Cross Standards Cooperation

Asset format to enable 3D content to be pervasively delivered and displayed on a wide diversity of native and web viewers, applications and engines

Cooperation between gITF and USD ecosystems is a significant industry benefit

Multiple open-source projects including OpenPBR and MaterialX


Extensible framework and ecosystem for describing, composing, simulating, and collaboratively navigating and constructing 3D scenes

Metaverse Standards BOF

Presentation by glTF/USD Interoperability Working Group Tuesday 11:30AM Room 710

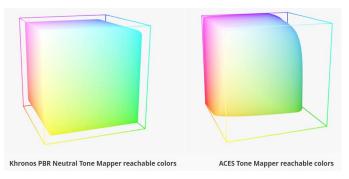
glTF PBR Materials Roadmap

Incremental consolidation and meticulous specification of proven and accepted industry practice

Subsurface In development

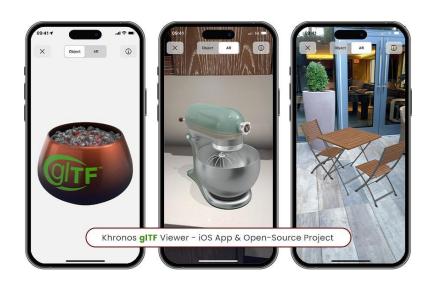
Khronos glTF PBR available in MaterialX

- glTF's PBR material is available as a node graph in MaterialX since 2022
 - Being updated for 2024
- Next step: feed MaterialX as a set of procedural texture inputs into glTF PBR
 - Enable much higher detail in smaller assets
 - Remain compatible with existing PBR shaders
 - Optional texture atlas fallbacks for compatibility
 - Extension in development



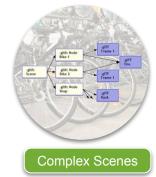
K H R O S O S

Khronos PBR Neutral Tone Mapper

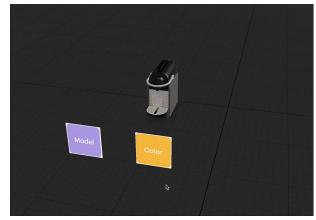

- True-to-Life Color Rendering of 3D Products
 - Released in May 2024
 - Specification and sample implementation
- 1:1 match for colors up to a certain maximum value
 - The remainder of color space used as headroom for compressed highlights
- Wide adoption and support by 3D tools and engines
 - <model-viewer>, Autodesk, Babylon.js, Blender, Dassault, Filament
 - London Dynamics, Phasmatic, Three.js, and ThreeKit

glTF Viewer for iOS

- OPEN-SOURCE
- Khronos Releases Open-Source iOS App for Viewing glTF Files
 - Available on the Apple App Store and supports AR mode
 - Source code available on GitHub under the Apache 2.0 license



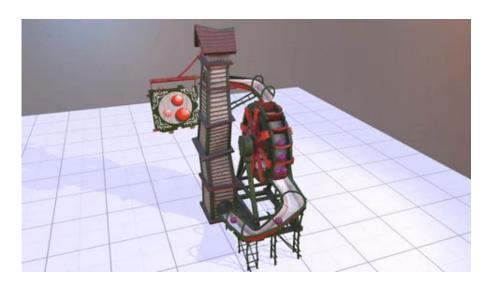
glTF Spatial Computing Roadmap



glTF Interactivity Extension

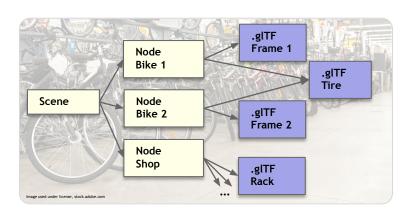
- Uses behavior graphs to add logic and behaviors to gITF assets
 - Interactive assets portable across eCommerce sites, applications, XR experiences etc.
 - Focus on safety, portability and ease of implementation
- Distillation of engine accepted practice
 - Unity (Visual Scripting), Unreal (Blueprints), Nvidia Omniverse (Action Graph)
- Invitation for Public Comments issued!
 - <u>Draft Specification</u> on GitHub | <u>Khronos webinar</u> on interactivity
 - Feedback on <u>GitHub pull request</u> | <u>glTF Interactivity Graph Authoring Tool</u> (WIP DCC React App)

gITF 2.0 with KHR_interactivity


glTF Physics

- Express the physics properties of assets in a platform independent way
 - Provides procedural animation
 - Makes scenes more interesting, believable, and dynamic
- Enables scene understanding
 - Possible with render geometry, but much more efficient with physics
- Rigid Bodies
 - Collision geometry | Rigid bodies
 - Motions | Materials
 - Joints | Filters

Distillation of widely adopted physics engines practices



<u>Specification</u> feedback welcome!

glTFX: glTF eXternal References

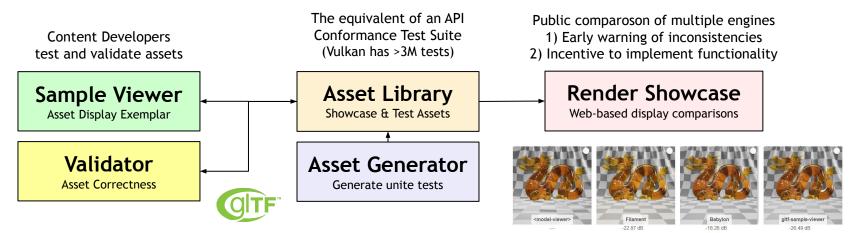
- Meet user requirement to reference multiple gITF assets
 - Complex scenes, Level-of-Detail, streaming, smart loading, scene change...
- Adds a new glTF file type (glTFX)
 - Contains eXternal reference to gITF files
 - New file does not specify any meshes, animations, materials, etc. directly
- Draft spec: khr.io/127

K H RON OS

Khronos 3D Commerce

Making 3D Pervasive - in the Real World

Build Once, Use Everywhere


Developing tools and techniques for 3D assets to be reliably and consistently used and displayed across diverse platforms and engines

Multiple Projects Underway

Render Showcase - evolve and expand Render Fidelity Site

Tone Mapping (PBR Neutral), exposure and lighting

Apparel: Skeletal & Facial Anchoring, Virtual Try-On, Stitching / detailing, Simulation

K H RON SON

Two gITF BOFs to Come and Learn More!

Innovations in 3D Content Delivery and Use Tuesday, July 30: 8:30 am - 11:30 AM Room 710

Start	Session	Presenter	
8:30	gITF Intro and Roadmap	Alexey Medvedev, Meta	
8:45	Interactivity	Peter Martin , Adobe	
9:00	Physics	Eoin Mcloughlin, Microsoft	
9:10	Audio	Chintan Shah, Meta	
9:20	Complex Scenes	Leonard Daly, Daly Realism	
9:30	AEC & Geospatial	Sean Lilly and Adam Morris, Cesium	
9:45	Q&A	All	
10:05	Image Compression	Stephanie Hurlburt & Rich Geldrich, Binomial	
10:20	PBR Materials	Alexey Medvedev, Meta	
10:30	Tone Mapping	Emmett Lalish, Google	
10:40	Content Creation	Eric Chadwick, DGG	

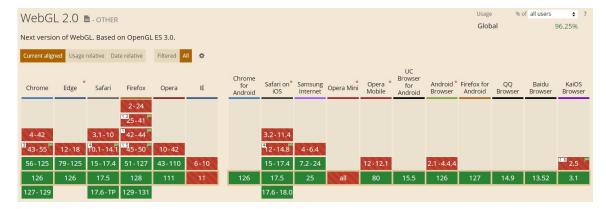
Slightly more in Depth

Innovations in 3D Content Delivery and Use Wednesday, July 31: 8:30 am - 11:30 AM Hyatt Regency Denver Capitol Ballroom 1-3

Start	Title	Presenter	
1:00	gITF Intro and Roadmap	Alexey Medvedev, Meta	
1:05	Interactivity	Peter Martin , Adobe	
1:20	Physics	Eoin Mcloughlin, Microsoft	
1:30	Audio Chintan Shah, Meta		
1:40	Complex Scenes	Leonard Daly, Daly Realism	
1:50	AEC & Geospatial	Sean Lilly and Adam Morris, Cesium	
2:05	Q&A	All	
2:25	Image Compression	Stephanie Hurlburt & Rich Geldrich, Binomial	
2:40	PBR Materials Alexey Medvedev, Meta		
2:50	Tone Mapping	Emmett Lalish, Google	
3:00	Content Creation	Eric Chadwick, DGG	
3:25	Q&A	All	

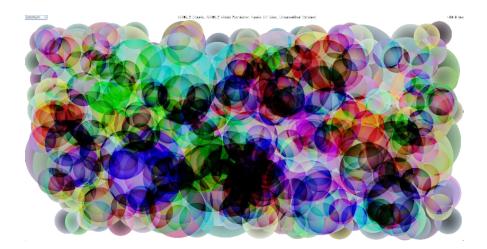
Part of the Khronos BOF Series

WebGL + WebGPU


Ken Russell Google

WebGL Update

- Khronos is fully supporting development of WebGPU at W3C
 - Working for a smooth transition for developers between WebGL and WebGPU
 - WebGPU brings GPU Compute to the Web using Vulkan/DX12/Metal backends
- WebGL is pervasive and will be used by many applications for many years
 - Khronos is evolving the WebGL specification and supporting multiple implementations
 - ANGLE's Metal backend supports WebGL 2.0 in Safari on macOS/iOS
 - Shipping in Chrome on Mac/ARM; coming to Mac/Intel
 - Firefox's WebGL implementation is similarly advancing


WebGL 2.0 is available on >96% of browsers

Pixel Local Storage Extension

- Programmable blending and other use cases
 - Developed by Chris Dalton from Rive with significant contributions from Alexey Knyazev
- Specification being finalized
 - In Draft in Chrome Canary
 - Implementation in ANGLE is tracking the spec and can ship soon afterward
 - <u>Specification</u> | <u>Source Code</u> | <u>Live demo</u> implements blend_equation_advanced
 - Enable WebGL draft extensions in about:flags

K H R O S

New WebGL Extensions

- Multiple useful <u>extensions</u> have been added to WebGL
 - Ported from OpenGL ES to WebGL
- These are now shipping in browsers
 - Enhance, speed up, and simplify applications
 - Always test for the presence of the extension and include fallback paths

EXT_clip_control

EXT conservative depth

EXT_depth_clamp

EXT polygon offset clamp

EXT render snorm

EXT texture mirror clamp to edge

NV shader noperspective interpolation

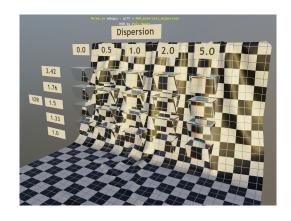
OES sample variables

OES shader multisample interpolation

WEBGL blend func extended

WEBGL clip cull distance

WEBGL polygon mode


WEBGL render shared exponent

WEBGL stencil texturing

WebGPU Updates

- The WebGPU ecosystem is solidifying!
- Firefox Nightly and Safari Technology Preview have WebGPU support today
 - Try your content and ensure it works across browsers!
- WebGPU specification is nearing Candidate Recommendation!
 - Aim to transition to Living Standard afterward
- Lots of ecosystem progress including <u>Three.js's WebGPU backend</u>



More exciting news in the Khronos WebGL + WebGPU BOF 9AM Wednesday morning!

Khronos Group Sessions at SIGGRAPH

Day	Time	Session Type / Title	Standards	
Mon, Jul 29	3:30pm - 4:30pm	Khronos Fast Forward	3D Commerce, ANARI, glTF, OpenXR, Vulkan, WebGL	
Tue, Jul 30	8:30am - 11:30pm	glTF: Innovations in 3D Content Delivery and Use	3D Commerce, gITF	
Wed, Jul 31	9:00am - 9:30am	Advancements in WebGL and WebGPU	WebGL & WebGPU	
Wed, Jul 31	10:00am - 11:00am	Exploring ANARI	ANARI	
Wed, Jul 31	11:00am - 12:00pm	OpenXR: Transforming the Future of Cross-Platform XR	OpenXR	
Wed, Jul 31	1:00pm - 3:00pm	glTF: Transforming 3D Asset Delivery for Real-Time Graphics	OpenXR	
Wed, Jul 31	3:00pm - 6:00pm	Vulkan, Forging Ahead (including Slang talk)	Vulkan	
Wed, Jul 31	6:00pm - 9:00pm	Social: Khronos Group Networking Reception	All	
Thu, Aug 1	11:50pm - 12:15pm	Siggraph Talk: Neutral Tone Mapping for PBR Color Accuracy	gITF	

Thank You! Have a Great Show!

More Information

www.khronos.org

memberservices@khronosgroup.org