

Khronos Fast Forward

Neil Trevett Khronos President and VP Developer Ecosystems at NVIDIA

This work is licensed under a Creative Commons Attribution 4.0 International License

(cc) BY

Speakers

Торіс	Speaker	Length
Khronos, Kamaros, AI, ANARI, glTF, Web	Neil Trevett, Khronos	30 minutes
Vulkan	Ralph Potter, Samsung	5 minutes
Slang Shading Language	Shannon Woods, NVIDIA	5 minutes
OpenXR	Jian Zhang, PICO	5 minutes
Audience Q&A	All	15 minutes

Khronos Connects Software to Silicon

Founded in 2000 ~ 150 Members | ~ 40% US, 30% Europe, 30% Asia K H R N O S[®]

Consortium creating open, royalty-free interoperability standards and open source to harness the power of GPU, XR and multiprocessor hardware

3D graphics, AI, augmented and virtual reality, parallel processing, and spatial computing

Non-profit, member-driven standards organization, open to any company

Proven multi-company governance and Intellectual Property Rights Framework

Khronos Active Standards

Khronos Standards for Spatial Computing

Needs for an Embedded Camera API Standard

Increasing Sensor Diversity

Including camera arrays and depth sensors such as Lidar

Multiple Sensors Per System

Synchronization and coordination become essential

Proprietary camera APIs often hide full camera capabilities to protect implementation IP Cost and time to integrate and utilize sensors is major industry friction point

Tighter Accelerator Integration

Sensors feeding machine learning and traditional acceleration pipelines

Efficiency and Low Latency Real-time interactive on power-constrained systems

Kamaros Scope

S O Z V

H R

 $\mathbf{\mathbf{Y}}$

In Development! Kamaros API provides controls for Camera Modules and close-to-sensor Image Signal Processing (ISP) hardware

Khronos Standards for Spatial Computing

2 т \mathbf{Y}

Machine Learning Acceleration APIs

Machine Learning Acceleration APIs

This work is licensed under a Creative Commons Attribution 4.0 International License

K H R N O S

Machine Learning Acceleration APIs

This work is licensed under a Creative Commons Attribution 4.0 International License

°S O N N

2

К Н

Embedded Machine Learning

Name	Туре	Authoring Frameworks	Acceleration APIs
Cadence Xtensa Neural Network Compiler (XNNC)	Compiler	TensorFlow, PyTorch, ONNX	OpenCL OpenVX.
CEVA Deep Neural Network compiler (CDNN)	Compiler	TensorFlow, PyTorch, Caffe, ONNX	OpenCL OpenVX.
Synopsis MetaWare EV	Runtime	TensorFlow, PyTorch, Caffe, ONNX	OpenCL OpenVX.
Texas Instruments DL Library (TIDL)	Runtime	TensorFlow, PyTorch, Caffe, ONNX	
VeriSilicon Acuity Acuity	Runtime		OpenCL OpenVX.
Xiaomi Mace 😡 MACE	Runtime	TensorFlow, Caffe, ONNX	OpenCL Vuikan.
Xilinx Vitis Al	Runtime	TensorFlow, PyTorch	Open CL Native

OpenCL and OpenVX are the open standard APIs of choice for inferencing acceleration in embedded (and often mobile) devices

K H R N N S

Accelerated ML Industry Discussions

- Do intermediate runtimes or compilers deliver best performance?
- Do high-level or low-level acceleration APIs deliver the best performance?
- What functionality should APIs provide for effective tensor acceleration?
- What is the most effective way to balance inferencing and other loads on a GPU?
- How can APIs provide acceleration across diverse hardware such as GPUs and NPUs?
- Should the industry agree on a standard tensor operator set such as Arm's TOSA?

	ML Authoring Frameworks 🛛 👎	TensorFlow	🕐 РуТог	rch LL	aMA Meta	، زرنه	PaddlePaddle Baidu
		PyTorch Gr OpenVING		ML Comp	oilers X	Stvm	GLOW IREE
	High-level Acceleration API Dir	rectML	kan. Open	E SYCL.	ML Oper	rators	S- TOSA
	Low-level Acceleration APIs	AMDA ROC		DirectX 📐			

Native machine learning stack

Similar discussions happening in the JavaScript stack for machine learning in the Web

This work is licensed under a Creative Commons Attribution 4.0 International License

້ທີ

O° Z°

2

Т

ANARI Rendering Engine API

Neil Trevett, NVIDIA

(cc) BY

This work is licensed under a Creative Commons Attribution 4.0 International License

Scientific Visualization Before and After ANARI

ANARI applications are portable to any engine supporting the ANARI API Independently of vendor, platform or ecosystem

This work is licensed under a Creative Commons Attribution 4.0 International License

ANARI Scene Representation

ANARI API used to build in-memory scene representation

Hierarchical object tree that expresses the complete scene for a single frame

Sections of the tree can be re-used to optimize resource utilization

Scene representation can be used to drive any rendering backend - rasterization techniques are NOT prescribed

ANARI only defines "what" and "when" not "how"

This work is licensed under a Creative Commons Attribution 4.0 International License

°S O N Z

2

×

ANARI - Simplified and Portable Rendering

ANARI 1.0 Specification shipped in 2023

ANARI can be used by any type of application for portable access to diverse rendering engines including those using ray tracing and global illumination

This work is licensed under a Creative Commons Attribution 4.0 International License

2

ANARI Virtual Hackathon 2024

- Developers from around the globe gathered for three days
 - To push the boundaries of 3D rendering with ANARI
- Results included:
 - Overhaul to VTK-ANARI integration
 - New VTK-m implementation
 - Volume rendering with the Blender Cycles renderer

For presentations, results and news of future events go to <u>ANARI Virtual Hackathon 2024</u>

ANARI Updates

Adopters Program Released

°S O N Z

Т

 $\mathbf{\Sigma}$

- Improved Conformance Test Suite (with more on the way!)

Many SDK improvements and additions

- Initial version of an OpenUSD Hydra plugin 'hdAnari' now available
- New Blender add-on contributions welcome!
- Application debug layer can be enabled without code changes
- Helium now provides a generic host-side array implementation

gITF & 3D Commerce

Neil Trevett

This work is licensed under a Creative Commons Attribution 4.0 International License

(CC) BY

This work is licensed under a Creative Commons Attribution 4.0 International License

2

[©] The Khronos® Group Inc. 2024 - Page 21

gITF PBR Materials Roadmap

Incremental consolidation and meticulous specification of proven and accepted industry practice

S O N N N

HR

 $\mathbf{\Sigma}$

This work is licensed under a Creative Commons Attribution 4.0 International License

gITF Spatial Computing Roadmap

Interactivity

Compose complex scenes from referenced gITF assets Efficiency and flexibility in transmission/delivery use cases Placement, configuration, cache reuse, personalization, deferred loading, LODs, mesh variants etc.

Describes physical properties of assets Distillation of widespread accepted practice Rigid Bodies: motions, collisions, materials, joints filters

Node-based graph handling of user actions or events

Flexible computed scene state updates and animations

Distillation of widespread accepted practice

Triggered and controlled from interactivity node graph 3D spatialized audio with 6DoF source/listener capabilities, Play, stop, pause, loop, and speed controls Splitting, merging, up/down-mixing, reverb, filtering

Market Segment Industry Collaboration

Khronos welcomes working collaboratively to leverage gITF extensibility Market-specific extensions and use of gITF controlled by partner standards organization Accelerates development of market segment functionality Avoid needless duplication and fragmentation

Khronos 3D Commerce

Making 3D Pervasive - in the Real World

Build Once, Use Everywhere

Developing tools and techniques for 3D assets to be reliably and consistently used and displayed across diverse platforms and engines

Multiple Projects Underway

Render Showcase - evolve and expand Render Fidelity Site Tone Mapping (PBR Neutral), exposure and lighting Apparel: Skeletal & Facial Anchoring, Virtual Try-On, Stitching / detailing, Simulation

This work is licensed under a Creative Commons Attribution 4.0 International License

H R

 $\mathbf{\Sigma}$

Khronos PBR Neutral Tone Mapper

- True-to-Life Color Rendering of 3D Products
 - <u>Released</u> in May 2024
 - Specification and sample implementation
- 1:1 match for colors up to a certain maximum value
 - The remainder of color space used as headroom for compressed highlights
- Wide adoption and support by 3D tools and engines
 - <model-viewer>, Autodesk, Babylon.js, Blender, Dassault, Filament
 - London Dynamics, Phasmatic, Three.js, and ThreeKit

gITF Roadmap Overview

	Baseline Today	Short Term Roadmap (23-24)	Roadmap Discussions				
Geometry	Draco Mes meshopt	Quads, SubDiv Vector Displacement Implicit spheres and strands? Nerfs, Gaussian Splats					
External References		Placement, Configuration, Cao Deferred Loading, LC	che Reuse, Personalization, DDs, Mesh Variants				
Textures and Materials	KTX 2.0 textures w Basis Universal Material Variants PBR Core + PBR Extension Wave 1-4	PBR Wave 5: Subsurface Scattering MaterialX Node graph update HDR Universal Textures Video Textures, Procedural Textures	PBR: Diffuse Transmission, Material X Procedural Textures				
Animations	Keyframe/Skinned	Blender-compatible animation	Multi-track animation/blending Skeletons, Rigs and Anchors Animation Compression				
Lights	Pu Point, spot,	Punctual IES, Rectangular Are ot, and directional Dome/Image					
Interactivity		Node-based Behavior Graph					
Physics		Collisions, Rigid Bodies, Joints Deformable Bodie					
Audio		Playback (e.g., play, stop, loop), Spatial audio, Signal processing (gain, delay, pitch, reverb, filtering), multiple channels with splitting, merging Animation control and dynamic update of node properties					

K H R N N O S

glTF/USD 3D Asset Interoperability

The Metaverse Standards Forum

A neutral venue for pre- and post-standardization cooperation

Enable standards organizations to leverage each other's work and minimize overlaps/fragmentation

The Forum's glTF/USD 3D Asset Interoperability Working Group is enabling communication and cooperation between the glTF and USD communities

This work is licensed under a Creative Commons Attribution 4.0 International License

S O N N N

2

т

 $\mathbf{\Sigma}$

glTF BOF Session!

glTF: Transforming 3D Content Delivery for Real-Time Graphics

Friday 6th 11:00-12:00 noon, G408

Topics

glTF update and roadmap 3D Commerce Working Group VRM Avatar Format and Khronos cooperation Metaverse Standards Forum and OpenUSD cooperation

Forging the Immersive Web BOF

Neil Trevett

This work is licensed under a Creative Commons Attribution 4.0 International License

(cc) BY

WebGL Update

- Khronos is fully supporting development of WebGPU at W3C
 - Working for a smooth transition for developers between WebGL and WebGPU
 - WebGPU brings GPU Compute to the Web using Vulkan/DX12/Metal backends
- WebGL is pervasive and will be used by many applications for many years
 - Khronos is evolving the WebGL specification and supporting multiple implementations
 - New extensions: Pixel Local Storage and more OpenGL ES functionality

	WehG	1201												Osage	70 0	allusers	₹ (
	VVCDO	L 2.0 1	- OTHER											Glob	al	g	6.25%
	Next versi	on of Web	GL. Based o	on OpenGL	ES 3.0.												
	Current alig	ned Usage	relative Dat	te relative	Filtered A	•											
	Chrome	Edge *	Safari	Firefox	Opera	IE	Chrom for Androi	e Safari on* J iOS	Samsung Internet	* Opera Mini	Opera * Mobile	UC Browser for Android	Android * Browser	Firefox for Android	QQ Browser	Baidu Browser	KaiOS Browser
				2-24													
				¹² 25-41													
WahCl 2 0 is susilable on	4-42		3.1-10	¹ 42-44				3.2-11.4									
webge 2.0 is available on	^B 43-55	12-18	10.1 - 14.1	¹⁵ 45-50	10-42			412-14.8	4-6.4								
>96% of browsers	56-125	79-125	15-17.4	51-127	43-110	6-10		15-17.4	7.2-24		12-12.1		2.1-4.4.4			l	¹⁵ 2.5
	126	126	17.5	128	111	11	126	17.5	25	all	80	15.5	126	127	14.9	13.52	3.1
	127-129		17.6-TP	129-131				17.6-18.0									

ັງ

Khronos and W3C - XR Cooperation

XR Applications and Engines have access to native and JavaScript APIs with aligned functionality

This work is licensed under a Creative Commons Attribution 4.0 International License

2

I

 $\mathbf{\Sigma}$

Immersive Web: Standards & Open Source

Creating the Immersive Web will need and leverage the work of many standards organizations, consortia and open-source projects Standardization is a cooperative endeavor!

The Immersive Web BOF will provide latest updates and how the industry is working together

2

Т $\mathbf{\Sigma}$

Immersive Web BOF Session!

S O N N

2

т

 $\mathbf{\Sigma}$

Forging the Immersive Web through Real-Time Graphics

Wednesday 4th 3:30-4:30PM, G408

Topics

glTF and WebGL updates Khronos and W3C cooperation Immersive Web and WebXR update three.js update (mrdoob!) WebGPU update OpenPBR and the web

ASWF SOFTWARE FOUNDATION WSC three.js KHRONSS

Vulkan: Forging Ahead!

Ralph Potter (Samsung), Vulkan Working Group chair

(cc) BY

This work is licensed under a Creative Commons Attribution 4.0 International License

© The Khronos[®] Group Inc. 2024 - Page 35

Releasing Today!

°S° O°2 N°2

K H R

https://khr.io/vulkan14

This work is licensed under a Creative Commons Attribution 4.0 International License

Vulkan

S O N N

2

Т

An explicit API for graphics and compute on GPUs

- Radically cross-platform, from embedded to desktop
- Focus on high performance and user control

Driving the future evolution of graphics hardware

- Setting requirements for new hardware
- Ensuring compatibility with current hardware
- Focus on solving issues raised by industry experts

Developed collaboratively by industry experts

Input considered from a wide range of sources

Roadmap Sets Direction, Core Solidifies It

Roadmap **2024**

Vulkan **Core 1.4**

S O Z N

HR

 $\mathbf{\Sigma}$

- Vulkan 1.4 is the first core version derived from the roadmap
 - Notable benefits both in design and development
 - Enabled huge increase in supported features
- Most of the tough questions for 1.4 largely already answered
 - Future direction already set with the roadmap
 - Features already designed, shipped, and implemented
 - Vendors already knew which hardware could support what

• "Just" had to put the pieces together

- Much easier development cycle than previous cores
- Allowed us to focus on future roadmap items

Vulkan 1.4 Core Specification

Integrates significant requested functionality proven as extensions Mandated support for new functionality ensures availability on all Vulkan 1.4 implementations Dynamic rendering local read bringing subpass support to the dynamic rendering API Streaming transfers via host image copy or mandatory async transfer queue support Fine-grained control of <u>floating point optimization behavior</u> Mandating previously optional features such as scalar block layout and 8/16 integer support Maintenance extensions up to VK_KHR_maintenance6 Several limit increases, including 8K rendering with up to eight separate render targets

> And more... 16 extensions promoted 28 optional features become mandatory 31 minimum hardware limits raised

This work is licensed under a Creative Commons Attribution 4.0 International License

Vulkan BOF Session!

Vulkan: Forging Ahead Thursday 5th 3:30-5:30PM, G407

Topics

Vulkan 1.4 launch! Vulkan SDK Update HDR support in Vulkan GPU-driven Rendering in Vulkan Vulkan Safety Critical

S O Z N

2

Η ⊻

(CC) BY

Slang Fast Forward

Shannon Woods NVIDIA, Slang Working Group Chair

This work is licensed under a Creative Commons Attribution 4.0 International License

Open-Source, Cross-Platform Compiler

Modular code, portable deployment, and neural computation

This work is licensed under a Creative Commons Attribution 4.0 International License

້ທີ

O[°]

Z°

2

Η×

Slang is Now Under Khronos Open Governance

- 3D developers need a modern, responsive domain-specific shading language
 - To fit an ecosystem that has grown in scope and complexity
- Slang leverages 15 years of R&D and development experience
- Transition to Khronos to foster industry-wide collaboration and innovation

For developers, by developers!

- Community structure built from OSS best practices
- Any company or individual is welcome to become a contributor, not just Khronos members
- Decision-making and development in the open you can join technical conversations today on <u>Discord</u>, or propose features directly to the repository.
- Slang developers make the decisions about what goes into the language, and you can become one

S O Z N

2

Η×

The Neural Rendering Revolution

• Intuitive use of machine learning in real-time shaders

- Generate geometry/texture/material LODs, compression, approximations, parameter tuning
- Embed training inside the renderer e.g., accelerate learned Neural Materials
- Deeply integrated, first-class automatic differentiation
 - Eliminates need for additional, separate differential version of every shader

S S N N N

HR

 $\mathbf{\Sigma}$

Neural Materials Movie-quality photoreal materials in real-time with appearance-based LOD

Neural Shapes New content creation paradigms and LOD solution

Neural Lighting Neural Radiance Neural Path Sampling

Thank you for your interest in Slang!

Star History

This work is licensed under a Creative Commons Attribution 4.0 International License

© The Khronos[®] Group Inc. 2024 - Page 46

K H R O N O S

Slang BOF Session!

S O Z V

HR

 $\mathbf{\Sigma}$

Slang and the 3D Shading Language Landscape

Wednesday 4th 1:00-2:00PM, G407

Khronos BOFs

OpenXR Fast Forward

Jian Zhang Head of XR Foundation Engineering, PICO

(CC) BY

This work is licensed under a Creative Commons Attribution 4.0 International License

OpenXR Cross-Platform Portability

Before OpenXR: Applications and engines needed separate proprietary code for each device on the market.

S O N N

Ŕ

ΗX

OpenXR provides a single cross-platform, high-performance API between applications and all conformant devices.

Applications and engines can portably access any OpenXR-conformant hardware

Conformant OpenXR Devices

Microsoft	Meta	
HoloLens and Mixed Reality Headsets. Hand and eye tracking extensions	Rift S, Quest 3, Quest 2 and Quest Pro Meta Deprecated own API for OpenXR	Vive Focus 3, Vive Cosmos, Vive XR Elite, Vive Wave Runtime
	ロコレン	Canon
Valve Index Valve Deprecated OpenVR APIs for OpenXR	All Varjo Headsets are fully compliant XR-3, XR-4	MREAL X1
Magic Leap		Snapdragon spaces
Magic Leap 2	XREAL Air 2, Air 2 Pro, Air 2 Ultra	Qualcomm Snapdragon Spaces XR Development Platform
acer		SONY
Spatial Labs Display Series	Neo 3, PICO 4, PICO 4 Pro, PICO 4 Ultra	Spatial Reality Displays

This work is licensed under a Creative Commons Attribution 4.0 International License

°S O N N N N

K H R

The OpenXR Story So Far...

Empowering Crossplatform Immersive Experiences

OpenXR 1.1

Consolidates multiple extensions to streamline application development and reduce fragmentation Adds new functionality with spec improvements

This work is licensed under a Creative Commons Attribution 4.0 International License

© The Khronos[®] Group Inc. 2024 - Page 51

OpenXR 1.1 Key Extensions Promoted to Core

Local Floor Reference Space

- Gravity-aligned world-locked origin for standing-scale content
- Estimated floor height built in
- Recenter to current user position at the press of a button without a calibration procedure
- Grip Surface
 - Anchors visual content relative to the user's physical hand
 - Can be tracked directly or inferred from a physical controller's position and orientation
- Stereo with Foveated Rendering for XR headsets
 - Runtimes MAY optionally expose eye-tracked or fixed foveated rendering
 - Portable across multiple graphics rendering APIs

Additional enhancements

- Interaction Profile improvements
- Spec language cleanup and clarifications

Coming Soon to OpenXR

Extending hand tracking

- To include full body tracking
- Enhanced handling of spatial entities
 - Standardized methods to interact with the user's environment
 - Support for advanced spatial computing applications
- Expanded haptics support
 - Support immersive experiences through PCM, vibrotractiles, and transients
- Controller render models (glTF)
 - Showing and animating a model of the user's actual controller

OpenXR SDK GitHub

S O N N

OpenXR BOF Direction Discussions

- Empowering Cross-Platform Immersive Experiences
 - The long-term goal of OpenXR

• Enabling Multi-Application Support in XR

- Extend the XR use cases beyond Fully Immersive experiences: Multi-App
- Rendering Architecture: Unified Rendering vs Self Rendering
- Jian Zhang, Praveen Babu J D (PICO)

• Secured and private access to XR device cameras / Sensors

- Framework to run your own ML model on XR devices
- Developer driven mixed reality effects
- Jimmy Alamparambil, Jane Tian (PICO)

້ທີ

OpenXR BOF Session!

S O Z N

HR

 $\mathbf{\Sigma}$

OpenXR: Transforming the Future of Cross-Platform XR Development Thursday 5th 2:15-3:15PM, G407

Khronos BOFs

Khronos BOFs at SIGGRAPH Asia

Day	Time / Room	Session Title	Standards and Projects
Tuesday 3rd	1:00-2:00PM, G408	Khronos Fast Forward	Vulkan, OpenXR, Slang, ANARI, glTF
Wednesday 4th	1:00-2:00PM, G407	Slang Shading Language	Slang
Wednesday 4th	3:30-4:30PM, G407	Immersive Web with Khronos and W3C	WebGL, WebXR, WebGPU, three.js
Thursday 5th	2:15-3:15PM, G407	OpenXR Update and Roadmap	OpenXR
Thursday 5th	3:30-5:30PM, G407	Vulkan Update and Ecosystem	Vulkan, Vulkan SC, Slang
Friday 6th	11:00-12PM, G408	glTF 3D Transmission Format	glTF, VRM Avatar Format

All BOF slides and videos will be uploaded to the Khronos SIGGRAPH event page

Khronos BOFs

Khronos Information

www.khronos.org memberservices@khronosgroup.org