
© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group. All product names are trademarks or registered trademarks of their respective holders.

COLLADA CTS TutorialCOLLADA CTS TutorialCOLLADA CTS TutorialCOLLADA CTS Tutorial
By Paula Berinstein

paula@mechnicality.com | July 2011

OverviewOverviewOverviewOverview

The COLLADA™ intermediate language
specification is intended to standardize 3D
data, but there’s a wide variation in the way
applications work with COLLADA files. To help
developers adhere to the standard and create
3D tools that work together seamlessly, the
Khronos Group created the COLLADA
Conformance Test Suite (CTS).

The objective of the tests is to insure that
conformant products can import from and
export to other conformant products so that
the entire 3D tool chain performs seamlessly.
The tests may be used on one target
application alone for both conformance and
regression testing, or to verify interoperability
between one application and another, e.g.,
Google SketchUp™, Autodesk® 3ds Max® and
Autodesk® Maya®.

The COLLADA CTS comprises 613 tests. There
are three possible levels of conformance
(badges)--Baseline, Superior, and Exemplary—
but regardless of the application’s capabilities,
all the tests must be run. Based on the
results, the framework determines which, if
any, badge to award.

The conformance tests can be used on two
types of applications: import only and
import/export. Import-only applications
include 3D document viewers, game engines,
ray tracers, and rendering packages.
Import/export applications include most
traditional content creation tools that do
modeling and animation. Both classes of
applications must be able to render COLLADA
data as an image because that is the primary
method the CTS uses to determine whether a
COLLADA document has been correctly
understood. For a complete test, the software
must also be able to import and export

COLLADA documents. You can test packages
that support only some of these functions,
but they can only earn conformance within the
context of a conformant implementation
environment (i.e., one that has already passed
the test suite) that provides the missing
functionality.

The suite tests: The suite tests: The suite tests: The suite tests:

• Whether the target application handles
COLLADA input and output properly,
and whether files are rendered
consistently using files created under
different conditions (Import, Render,
Export)

• Whether the target application

outputs COLLADA documents that
conform to the COLLADA schema
(Validate).

Some of the issues tested are:Some of the issues tested are:Some of the issues tested are:Some of the issues tested are:

• How complete the support is for each
feature

• How robust the target application is
when bad data is encountered

• Whether images and movie clips look
as expected

• Whether all features are preserved
during a load/save cycle.

© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group. All product names are trademarks or registered trademarks of their respective holders.

Types of tests include:Types of tests include:Types of tests include:Types of tests include:

• Minimal unit tests for specific
features, like document referencing
and skinning

• System tests that exercise desirable
common scenarios, such as skinned rag
doll export/import with COLLADA FX
materials on different body parts

• Stress tests for very large scenes
• Handling of local or temporary test

data
• Handling of invalid or corrupt data.

All importers must be able to read any valid
COLLADA document without failure, even if
that document contains features not
supported by the importer. Features beyond
the importer’s level of support are not required
to be understood, but simply encountering
them should not cause the importer to fail.
Unusual or unexpected ordering or quantity of
elements should not cause an importer to fail
as long as the document validates to schema.
For example, library elements may occur in any
order and libraries of the same type can
appear multiple times. Importers must not
require their own COLLADA extensions in order
to understand valid documents.

All exporters must create documents that
validate to the COLLADA schema. Documents
exported by the implementation should
support the same feature set as that
implementation's importer in order to provide
a lossless (roundtrip) content pipeline.

The CTS works through a GUI. You can also use
a command line interface, and certain
functions can be performed through the
Windows file viewer. (The suite currently
works only on computers running the
Microsoft Windows® operating system.)

Working with the testsWorking with the testsWorking with the testsWorking with the tests

Using the tests is a matter of installing,
configuring, and running them. The broad
steps are:

1. Prerequisites (download and install the
suite and some helper applications)

2. Integration (write and test a Python
script)

3. Set up the tests (create a test
procedure, add tests)

4. Run the tests
5. Interpret the results
6. Submit results to Khronos.

This tutorial covers all the steps.

© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group. All product names are trademarks or registered trademarks of their respective holders.

Things you need to know Things you need to know Things you need to know Things you need to know
about the testsabout the testsabout the testsabout the tests

Blessed images

The CTS incorporates the idea of “blessing.”
This has nothing to do with religion, but refers
to results that have been officially “blessed”
by Khronos, i.e., considered correct and
conformant by the COLLADA work group. A set
of blessed images and animations comes with
the test suite; you can compare these with
your results to see how close you are and how
you differ. Other than that, you don’t have to
worry about the idea of blessing. (There are
some legacy menus and sections in the
documentation that refer to blessing; ignore
them.)

Figure 1. A blessed image.Figure 1. A blessed image.Figure 1. A blessed image.Figure 1. A blessed image.

Because COLLADA is not a rendering standard,
not all applications will render images the
same way. Differences can include variations
in lighting, cameras, geometry, shading, color
space, anti-aliasing, and so on. Nevertheless,
the tests have been designed such that the

target application must generate its own
images so that an “internally consistent”
comparison can be made by the framework.
Image comparison tools also allow the
integrator or developer to easily compare
against “blessed” images as an aid to
debugging. Exact pixel-for-pixel matches are
not required in order to pass a test.

Types of testsTypes of testsTypes of testsTypes of tests

There are three types of tests: simple,
medium, and complex:

1. SimpleSimpleSimpleSimple. Tests that pass/fail based on
successful importing, or importing and
then exporting a COLLADA document.
Examples include tests that check for
proper handling of URIs on
import/export, checking for unwanted
adding/removing of elements from the
document, testing sensitivity to
element ordering, and checking for the
ability to process any valid COLLADA
document without crashing.

2. MediumMediumMediumMedium. Tests that require a

successful import, export, and
rendering of the exported document in
the target application. These tests are
generally used to confirm that
programs are correctly processing and
re-exporting a document without
corrupting the geometry and other
elements in it.

3. ComplexComplexComplexComplex. Tests that require a

successful import, export, and
rendering of the exported document in
the target application. This type of test
insures that the application is correctly
interpreting the contents of the
document. It is used to check how well
the application handles materials,
textures, cameras, lights, etc.

© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group. All product names are trademarks or registered trademarks of their respective holders.

Two cyclesTwo cyclesTwo cyclesTwo cycles

Each test runs through two cycles:

• The first cycleThe first cycleThe first cycleThe first cycle involves importing the
test case's COLLADA document,
rendering it, and exporting it. This cycle
tests whether the target application
can import and work with a valid
COLLADA document (that was
possibly) created in another tool.

• In the second cycleIn the second cycleIn the second cycleIn the second cycle, the COLLADA

document that was exported in the
first cycle is reimported into the target
application, re-rendered, and validated
against the COLLADA schema. This
cycle tests whether the document
exported in the first cycle imports and
compares properly and outputs valid
COLLADA that can be imported by
other conformant tools. The Validate
step is needed to verify that the
exported document meets criteria not
tested in the Export step.

As you can see, a complete test includes two
import and render operations. The first time,
you import the test document furnished by
Khronos; the second time, you import the
document you just exported. This workflow is
shown in Figure 2.

Figure 2. The steps in a test. Understanding Figure 2. The steps in a test. Understanding Figure 2. The steps in a test. Understanding Figure 2. The steps in a test. Understanding
this workflow is key to passing the tests.this workflow is key to passing the tests.this workflow is key to passing the tests.this workflow is key to passing the tests.

Datasets for input and outputDatasets for input and outputDatasets for input and outputDatasets for input and output
A collection of datasets come with the test
suite (the StandardDataSets directory). These
datasets hold the input to the tests. Some
input files come with the suite; others are
generated by the tests. The paths to the input
are specified in the integration script.

© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group. All product names are trademarks or registered trademarks of their respective holders.

The output files are written to subdirectories
in the TestProcedures directory.

Figure 3. The StandardDataSets directory in Figure 3. The StandardDataSets directory in Figure 3. The StandardDataSets directory in Figure 3. The StandardDataSets directory in
the CTS hierarchy.the CTS hierarchy.the CTS hierarchy.the CTS hierarchy.

Getting StartedGetting StartedGetting StartedGetting Started

In order to run the COLLADA conformance
tests, your application must be able to:

• Read and write COLLADA files
• Render a PNG image (at 512 x 512!)
• Include scriptable viewpoints and

scriptable lights.

The tests run on Windows machines only right
now. The conformance test framework only
officially supports 32-bit Windows, but you
can run it on a 64-bit machine. Make sure your
system has enough juice; the tests take up a
lot of memory.

Downloading and installing the CTSDownloading and installing the CTSDownloading and installing the CTSDownloading and installing the CTS

The test suite uses long file names that can
cause problems on Windows systems by
exceeding the 255-character path name limit.
To make sure your installation goes smoothly,
unzip the package in the root directory of your
disk volume or some other directory with a
short path name.

PrerequisitesPrerequisitesPrerequisitesPrerequisites

PythonPythonPythonPython----related toolsrelated toolsrelated toolsrelated tools

Before you can run the suite, you will need to
install some Python-related tools, which you
can find in the CTS\Prerequisites directory.
(The directories referred to in this tutorial are
part of the test framework, not areas of the
Khronos site.) These include Python itself, the
Win32 extensions, wxPython, and pyOpenGL.
Even though the suite comes with the correct
version of Python, you may have to install
more than one version because so
me applications, such as Blender, need them.
It is a good idea to check the "add software"
panel on your computer before installing
anything to see if more recent versions of
these tools are already installed. You must use
the version numbers shown in this directory or
higher. If your copy of Python isn’t installed in
the standard location, you may need to set its
path in the config file.

On Windows 7 and Vista, you have to install
the Python tools as an administrator.

.NET.NET.NET.NET

Check to make sure the Microsoft .NET
framework is installed. If you don’t have it, the
framework cannot validate your COLLADA
documents (MSXML is the default validator),
and you can’t enable crash detection. You can
disable crash detection or specify the timeout
value in the config file. See the Integration
section of this tutorial.

© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group. All product names are trademarks or registered trademarks of their respective holders.

IntegrationIntegrationIntegrationIntegration

Integration involves sending information back and forth between the test suite and the target
application. It’s accomplished by writing and running a Python script and modifying a config file that
comes with the suite. The Python script generates and executes other scripts for the target
application.

Integrating a target application with the test suite requires the following steps:

1. Create the Python script in the Scripts directory to map your application. Usually you will copy
an existing script and modify it.

2. Update config.txt in the top-level directory to set up your application path.

3. Debug by running a small sample of the suite.

TheTheTheThe config file config file config file config file

The config file is held in the root of the CTS directory.

Each line in the config file is a setting. On the left is the description; on the right, separated from the
description by tabs, is the value.You will need to update the config file with the path for your
application. Make sure you use a tab delimiter between the key and value and that your editor
doesn't convert tabs to spaces. Be sure, too, that there isn’t a blank line at the end of the file. If
there is a blank line at the end, you will get an error message like this:

C:\CTS>colladatestsuite.py
Traceback (most recent call last):
 File "C:\CTS\COLLADATestSuite.py", line 16, in ?
 frame = MainFrame(None, wx.ID_ANY, "COLLADA 1.4 Conformance Test Suite")
 File "C:\CTS\Core\FTestSuiteGUI.py", line 813, in __init__
 FSFrame.__init__(self, self, False)
 File "C:\CTS\Core\FTestSuiteGUI.py", line 104, in __init__
 FTestSuite.__init__(self)
 File "C:\CTS\Core\FTestSuite.py", line 26, in __init__
 key, value = line.split("\t",1)
ValueError: need more than 1 value to unpack

If the key and value aren’t separated by tabs, you’ll get this error: FTestSuite.py line 26.

© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group. All product names are trademarks or registered trademarks of their respective holders.

Figure 4. A config file that works for multiple target applications: Autodesk® Maya®, Figure 4. A config file that works for multiple target applications: Autodesk® Maya®, Figure 4. A config file that works for multiple target applications: Autodesk® Maya®, Figure 4. A config file that works for multiple target applications: Autodesk® Maya®,
Autodesk® 3ds Max®, AuAutodesk® 3ds Max®, AuAutodesk® 3ds Max®, AuAutodesk® 3ds Max®, Autodesk® Softimage®, NVIDIA FXComposer, Blender, and Google todesk® Softimage®, NVIDIA FXComposer, Blender, and Google todesk® Softimage®, NVIDIA FXComposer, Blender, and Google todesk® Softimage®, NVIDIA FXComposer, Blender, and Google
SketchUp™. SketchUp™. SketchUp™. SketchUp™.

The Python scriptThe Python scriptThe Python scriptThe Python script

You can find a variety of existing integration
scripts in the Scripts folder of the CTS
directory:

• FApplication is the basic script from
which all the others are derived. You
can find some useful comments there

• FMax is the script for Autodesk® 3ds
Max®

• FMaya is the script for Autodesk®
Maya®

• FMimic is a bare bones script that
includes a placeholder for a target
application. It doesn’t actually run an
application, but it does let you run the
tests. (They fail, of course, because
there is no application to interface
with.)

• FXsi is the script for Autodesk®
Softimage®.

The most important issues in writing a script,
or adapting an existing one, are
understanding:

• What the inputs are, where to find
them, and what to do with them

• What outputs you produce and where
they go

• The status codes you get and return.

If your application doesn’t support cameras
and lighting and/or doesn’t read camera and
lighting parameters from the COLLADA
document, you may have to set the camera
and light positions in your Python script, as
you need cameras and lights in order to render
and you must use the settings the tests
require. Some testers have found that they
need to delete their default lights and
cameras so that the application properly
renders the values in the COLLADA document.

© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group. All product names are trademarks or registered trademarks of their respective holders.

You do not have to write log files, but doing so can be useful for double-checking that the steps in
each operation have executed correctly. If you do write log files, each step must be checked and
written to the log separately. Here is some pseudo code contributed by Simone Nicolò, a software
engineer at Google, that shows how to write the log file for an Import operation for Google SketchUp:

Get the return value from Import
return_value = Sketchup.active_model.import "<model_path>"
then based on the return value write the log
if return_value
 # write 'Import Succeeded' to the log
else
 # write 'Import Failed' to the log
end

You will need to call the following methods in
the following order. You can find the list of
methods in HowToIntegrateSoftware.doc. The
document also includes specific info on
dealing with cameras.

1. Init
2. BeginScript
3. WriteImport
4. WriteRender
5. WriteExport
6. EndScript
7. RunScript
8. BeginScript
9. WriteImport
10. WriteRender
11. EndScript
12. RunScript

You need to implement these methods:You need to implement these methods:You need to implement these methods:You need to implement these methods:

GetPrettyName()GetPrettyName()GetPrettyName()GetPrettyName(): return string. Returns the
application name, which is hard-coded in the
script.

GetOperationsList()GetOperationsList()GetOperationsList()GetOperationsList(): return operations.
Returns a list of operations the application
performs: import, export and render.

GetSettingsForOperation(operation):GetSettingsForOperation(operation):GetSettingsForOperation(operation):GetSettingsForOperation(operation): return
settings. Returns a list of settings with
default values for a given operation.

BeginScript(workingDir): BeginScript(workingDir): BeginScript(workingDir): BeginScript(workingDir): return nothing. For
initializations. Command-line tools probably

won't need the Script methods. WorkingDir is
for temporary files. You must use this dir for
your application’s output. Each import starts a
script sequence, and if render/export are
there, they are batched together.

EndScript(): EndScript(): EndScript(): EndScript(): return nothing. Called after
writing all operations but before RunScript is
called. Can be used for cleanup.

RunScript(): RunScript(): RunScript(): RunScript(): return nothing. Runs the script
that executes the target application.

WriteImport(filename, logname, outputDir, WriteImport(filename, logname, outputDir, WriteImport(filename, logname, outputDir, WriteImport(filename, logname, outputDir,
settings, isAnimated, cameraRig, settings, isAnimated, cameraRig, settings, isAnimated, cameraRig, settings, isAnimated, cameraRig,
llllightingRig)ightingRig)ightingRig)ightingRig): return outputs. Writes the
importing filename to the current script.
Logname is the log file for this operation.
OutputDir is for outputs. Returns a list of
filenames relative to outputDir.

WriteRender(logname, outputDir, settings, WriteRender(logname, outputDir, settings, WriteRender(logname, outputDir, settings, WriteRender(logname, outputDir, settings,
isAnimateisAnimateisAnimateisAnimated, cameraRig, lightingRig): d, cameraRig, lightingRig): d, cameraRig, lightingRig): d, cameraRig, lightingRig): return
outputs. Writes rendering commands to the
imported file. logFilename is the log file.
outputDir is for outputs. Returns a list of
filenames relative to outputDir. Must include
at least one .PNG file.

WriteExport(lognameWriteExport(lognameWriteExport(lognameWriteExport(logname, outputDir, settings, , outputDir, settings, , outputDir, settings, , outputDir, settings,
isAnimated):isAnimated):isAnimated):isAnimated): return outputs. Writes
exporting commands to the imported file.
logFilename is the log file. outputDir is for
outputs. Returns a list of filenames relative to
outputDir.

© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group. All product names are trademarks or registered trademarks of their respective holders.

These methods pass information to the script that runs the target application. This script is run in
the RunScript method.

TTTThe FApplication script as a modelhe FApplication script as a modelhe FApplication script as a modelhe FApplication script as a model

Let’s look at the FApplication script in the Scripts directory to see what it says about methods, input,
and output.

Note the imported librariNote the imported librariNote the imported librariNote the imported libraries:es:es:es:

• os (a Python module)
• os.path (a Python module)
• subprocess (a Python module)
• Core.Common.FUtils (resides in the C:\CTS\Core\Common directory). Gets and replaces

filename extensions; determines whether a filename extension is that of an image file;
determines whether a filename is a proper filename; gets directory names and paths; parses
dates; and so on

• Core.Common.FConstants (defines the constants the scripts use).

Class FApplication is the abstract class for the target application. The class has tClass FApplication is the abstract class for the target application. The class has tClass FApplication is the abstract class for the target application. The class has tClass FApplication is the abstract class for the target application. The class has these defs:hese defs:hese defs:hese defs:

Def NameDef NameDef NameDef Name FunctionFunctionFunctionFunction InputInputInputInput ReturnsReturnsReturnsReturns

__init____init____init____init__ Create the FApplication Config file Nothing

SetApplicationIndexSetApplicationIndexSetApplicationIndexSetApplicationIndex Set the application index An integer Nothing

SetTestProcedureDirSetTestProcedureDirSetTestProcedureDirSetTestProcedureDir Set the test procedure
directory for detecting
crashes

A string representing the absolute file
path for the test procedure

Nothing

GetPrettyNameGetPrettyNameGetPrettyNameGetPrettyName Returns the application
name, which the user sees
when creating a test
procedure

Hard-coded Nothing

GetOperationsListGetOperationsListGetOperationsListGetOperationsList Return the operations
available in the
application (import,
export, render)

None A list of strings
representing
constants held in an
imported library

GetSettingsForOperationGetSettingsForOperationGetSettingsForOperationGetSettingsForOperation Returns the settings for
the target application with
respect to the given
operation (import, export,
render)

A constant from an imported library

A list of settings

BeginScriptBeginScriptBeginScriptBeginScript Performs any
initializations necessary
to run a test

A string representation of a temporary
file for the scripts that run the target
application

Nothing

EndScriptEndScriptEndScriptEndScript Perform finalizations
needed for running a test

None Nothing

RunScriptRunScriptRunScriptRunScript Executes the script that
runs the target application

None Nothing

© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group. All product names are trademarks or registered trademarks of their respective holders.

WriteValidateWriteValidateWriteValidateWriteValidate Writes the script that
executes a validator
application

Name of the file to be validated; the
name of the log file, which has already
been created; the path for the output
directory; the settings; a boolean
indicating whether the file is animated

Locations of the
output files other
than the log file

WriteImportWriteImportWriteImportWriteImport Writes the import
operation to the script
that runs the target
application

Name of the file to import; the name of
the log file; the path of the output
directory; a list of settings; a boolean
indicating whether the file is animated

Locations of the
output files other
than the log file

WriteRenderWriteRenderWriteRenderWriteRender Writes the render
operation to the script
that runs the target
application

Name of the log file; the path of the
output directory; a list of settings; a
boolean indicating whether the file is
animated

Locations of the
output files other
than the log file

WriteExportWriteExportWriteExportWriteExport Writes the export
operation to the script
that runs the target
application

Name of the log file; the path of the
output directory; a list of settings; and a
boolean indicating whether the file is
animated

Locations of the
output files other
than the log file

AddToScriptAddToScriptAddToScriptAddToScript Call the appropriate Write
method for the operation

A constant from an imported library; the
name of the file to be imported; the
name of the log file, which has already
been created; the path of the output
directory; a list of settings; a boolean
indicating whether the file is animated

Locations of the
output files other
than the log file

RunApplication, RunApplication, RunApplication, RunApplication,
WriteCrashDetectBegin,WriteCrashDetectBegin,WriteCrashDetectBegin,WriteCrashDetectBegin,
WriteCrashDetectWriteCrashDetectWriteCrashDetectWriteCrashDetect

Check for crashes and
handle them if they occur

Various Various

GetSettingValueAs, GetSettingValueAs, GetSettingValueAs, GetSettingValueAs,
FindDefaultFindDefaultFindDefaultFindDefault

Get the application name
and settings

Various Various

For more information on integration, see HowtoIntegrateSoftware.doc in the
C:\CTS\Documentation\HowtoAddSoftware directory

Creating and running the testsCreating and running the testsCreating and running the testsCreating and running the tests

To start the test suite GUI, click on the Python
script COLLADATestSuite.py in the CTS root
directory. The empty CTS GUI will launch.

 Figure 5. The empty CTS GUI.Figure 5. The empty CTS GUI.Figure 5. The empty CTS GUI.Figure 5. The empty CTS GUI.

Before you can run the tests, there are a Before you can run the tests, there are a Before you can run the tests, there are a Before you can run the tests, there are a
few things you must do:few things you must do:few things you must do:few things you must do:

1. Create a new test procedure (File
menu)

2. Open the procedure you just created
(File menu)

3. Add tests (Test menu).

Then the full test grid will appear, and you can
run the tests.

To run the tests with an existing procedure
(which you’ll do if your first run doesn’t result
in a badge), just select File|Open Test
procedure, and the full test grid will appear.

© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group. All product names are trademarks or registered trademarks of their respective holders.

Figure 6. Opening an existing test Figure 6. Opening an existing test Figure 6. Opening an existing test Figure 6. Opening an existing test
pppprocedure. rocedure. rocedure. rocedure.

Creating a test procedureCreating a test procedureCreating a test procedureCreating a test procedure

A test procedure comprises a series of tasks:
import, export, render, and validate. Each task
can generate one or more COLLADA
documents and/or images. You need to create
and configure a test procedure before you can
run any tests. Test procedures can be reused.

The input to a procedure is one or more data
sets, which are found in the StandardDataSets
subdirectory of the CTS hierarchy.

To create a new test procedure, select
File|New Test Procedure, and fill in the title:
<Product Name> CTS Submission. For Google
SketchUp, for example, your procedure name
might be SketchUp_CTS_Submission. Note:
Some test procedure names will not work with
spaces.

Figure 7. The New Test PrFigure 7. The New Test PrFigure 7. The New Test PrFigure 7. The New Test Procedure dialog.ocedure dialog.ocedure dialog.ocedure dialog.

In the Add Operation box, select each of the
tasks in the order specified here (which is not
necessarily the order in which the operations
appear in the box):

1. Import → <ProductName> → Add. Import

is the only task that requires a product
name. The product name will appear in the
right-hand window. (When you run the
integration script, the name of your
application will be added to the Import
drop-down box.) See Figure 8.

© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group. All product names are trademarks or registered trademarks of their respective holders.

Figure 8. Figure 8. Figure 8. Figure 8. The Add Operation box. The Add Operation box. The Add Operation box. The Add Operation box. First First First First
select Import, then the prodselect Import, then the prodselect Import, then the prodselect Import, then the product name.uct name.uct name.uct name.

2. Add Operation: Render → Add. Note the

Chosen Operations box. The operations
must be selected and display in the proper
order. Watch out: Export, which should be
selected after Render, appears before
Render in the Add Operation box. See
Figure 9.

FigFigFigFigureureureure 9. 9. 9. 9. After Import, select Render, After Import, select Render, After Import, select Render, After Import, select Render,
not not not not EEEExport.xport.xport.xport.

3. Add Operation: Export → Add.

See Figure 10.

© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group. All product names are trademarks or registered trademarks of their respective holders.

Figure 10. After Import and Render, Figure 10. After Import and Render, Figure 10. After Import and Render, Figure 10. After Import and Render,
select Export.select Export.select Export.select Export.

4. Add Operation: Import → <ProductName>

→ Add.

5. Add Operation: Render → Add.

6. Add Operation: Validate → MSXML 6.0 →

Add. See Figure 11.

Figure 11. After Import, Render, Export, Figure 11. After Import, Render, Export, Figure 11. After Import, Render, Export, Figure 11. After Import, Render, Export,
Import, and Render, select Validate.Import, and Render, select Validate.Import, and Render, select Validate.Import, and Render, select Validate.

You cannot add comments to a test procedure
after it’s been created. Do this now if you’re
going to do it at all. You may add comments to
test results at any time, however.

Select OK. OK. OK. OK. Now you’ve got a test procedure
and you’re ready to add tests. The
TestProcedures directory, which holds not only
procedures, but also the output from the
tests, should now have been created. It does
not come with the tests, but is produced on
the fly at this point in the setup process.

Even though the conformance test suite
manual mentions that there is a sample test
procedure, the CTS does not come with one.

© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group. All product names are trademarks or registered trademarks of their respective holders.

You can delete or rename a test procedure
through your Windows file viewer or command
line window, or you can rename a procedure
using the Save Test Procedure As icon in the
toolbar above the column headings. You
cannot delete a procedure through the test
GUI, but you can delete a single test using the
context menu in the GUI.

Adding testsAdding testsAdding testsAdding tests

Go to the Test menu and select Add Tests. The
Test Settings dialog will come up.

Figure 12. The Test Settings dialog, which Figure 12. The Test Settings dialog, which Figure 12. The Test Settings dialog, which Figure 12. The Test Settings dialog, which
is reached from Tests|Add Tests.is reached from Tests|Add Tests.is reached from Tests|Add Tests.is reached from Tests|Add Tests.

Configure any test settings your product
needs. In most cases, Default will be
sufficient. Press Next.

The tests expect an image size of 512 x 512;
size all of your images to those dimensions for
optimum comparisons. Larger images could
cause you to run out of memory. Smaller ones
may not compare well enough to pass the test

case. You can change the size in the Edit
Settings dialog, which is reached by pressing
Add/Edit on any of the operations shown in
the Test Settings dialog.

The Select Data Set dialog will come up.
Select:

StandardDataSets/Collada
StandardDataSets/xml.

Figure 13. The Select Data Set dialog, which Figure 13. The Select Data Set dialog, which Figure 13. The Select Data Set dialog, which Figure 13. The Select Data Set dialog, which
is reached from Tests|Add Tests|Test is reached from Tests|Add Tests|Test is reached from Tests|Add Tests|Test is reached from Tests|Add Tests|Test
Settings.Settings.Settings.Settings.

Press Finish.

Confirm that there are 613 tests in the Total
box on the toolbar. (The tests are numbered 0
through 612.) If not, and you’re attempting to
run the entire suite, either you didn’t select all
six operations or didn’t select the two
datasets you need. Try creating a new test
procedure.

© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group. All product names are trademarks or registered trademarks of their respective holders.

The gridThe gridThe gridThe grid

Once the grid displays, you can use not only
the menus and the toolbar, but also the
context commands, which you can see by
right-clicking on a particular cell. Some
context commands are available from every
cell; some are cell-specific. There is a list of
the context menus in section 9.7 of the CTS
manual, Context Menus.

The CTS displays standard format images. If a
format can’t be displayed, you’ll get a
message to that effect.

The grid comes up using factory-set display
options, but you can change the way it looks
by using File|Preferences.

Figure 14. The PreferenFigure 14. The PreferenFigure 14. The PreferenFigure 14. The Preferences dialog box, ces dialog box, ces dialog box, ces dialog box,
which is reached from File|Preferences.which is reached from File|Preferences.which is reached from File|Preferences.which is reached from File|Preferences.

If you check the Show Blessed or Show
Previous boxes, the Blessed and/or Previous
(from the previous test) images will be
displayed in the operation columns of the grid
(Import, Render, and Export, but not Validate).
Displaying these images makes the grid very
wide, but you can counteract that to some
extent by reducing the size of the preview
images from the standard 100 x 100 to
something smaller.

You can rearrange the order of the columns in
the grid or hide them entirely using the Shown
Columns box. To change the order, highlight
the desired column and click Move Up or Move
Down until the column is where you want it.
To hide a column, highlight the name of the
column and press >>. To unhide a column,
select the column name in the Hidden
Columns box and press <<. When you click OK,
the grid will update itself.

If you want to use an external viewer to look at
images, you can select one in Preferences|Diff
Viewer. Just browse to the program you prefer.

Running the testsRunning the testsRunning the testsRunning the tests

The input to the tests comes from the
Standard Data Sets dialog box, which you can
get to from the Tests|Add Tests dialog.

Each test is composed of a COLLADA
document (.DAE file) and a judging script.
Some of the scripts have different
requirements for different badges, so it is
possible to pass the Baseline level and not the
Superior or Exemplary, or Baseline and
Superior, but not Exemplary, for a given test.

The description of the test, i.e., what is being
tested, is displayed in the Description column
in the GUI and comes from the subject
element in the .DAE file. For more information
on what is being tested, see
COLLADA_CTS_test_cases.xls in the
c:\CTS\TestCaseDocumentation directory. You
can also check the judging scripts to see what
each test is looking for. The judging scripts are
contained in the StandardDataSets folder
structure along with the COLLADA input
document for each test.

Selecting testsSelecting testsSelecting testsSelecting tests

You can launch all the tests or a portion of
them from the Test menu. You can also run a
single test from the context menu (right-click)
when the cursor is positioned in its row. Some
tests depend on the successful completion of
other tests, so don’t (initially) run tests out of
order.

© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group. All product names are trademarks or registered trademarks of their respective holders.

You can select a range of tests by using the
CTL and/or SHIFT keys just as you do with any
Windows application. Hold down the CTL key
while selecting more than one test. To select a
block, highlight the topmost test, then hold
SHIFT down while you select the last test in
the sequence. All the tests in between the two
will highlight and you can Run Selected from
the Test menu.

There is no easy way to select only Baseline
tests, but don’t worry about that: there’s no
reason to do so. You have to run all the tests
in order to earn a badge.

While the tests are runningWhile the tests are runningWhile the tests are runningWhile the tests are running

You cannot minimize or move the CTS GUI
while tests are running.

The CTS divides each test into three sections
comprising one or more steps and runs them
one after the other to minimize loading time
for the target application. The steps, which
correspond to the operations Import, Render,
Export, and Validate in the order you set them
up, are numbered 0 through 5; the test grid
shows which number goes with which
operation. In Figure 15, the scripts for steps 0,
1, and 2 have been created and executed;
steps 3, 4, and 5 will run when the first batch
has completed.

Figure 15. The suite displays simple Figure 15. The suite displays simple Figure 15. The suite displays simple Figure 15. The suite displays simple
progress messages while the tests are progress messages while the tests are progress messages while the tests are progress messages while the tests are
running. running. running. running.

When a test crashes, the CTS attempts to
locate the last test that completed and reruns
the suite from there until it finds the test that
crashed. Once you have fixed the issue that
caused the test to crash, CTS will eventually
manage to continue past the failing test. You
can set crash detection to yes or no and
specify the timeout value in the config file.
Figure 23 shows what a crashed test looks like
in the grid: the Result column is red. By
contrast, Figure 17 shows what a failed test
looks like: green in the Result column, red
where the application failed to win a badge.

Canceling testsCanceling testsCanceling testsCanceling tests

When you cancel the tests, the CTS waits until
it reaches the next section before performing
the cancel operation. As of the time of writing,
this feature doesn’t work correctly, and you
have to use the Task Manager to quit the CTS.
Be aware that if you cancel, the suite ignores
the entire run, and you have to start over. As a
safeguard, you might want to run small
groups of tests to begin with.

Reading the resultsReading the resultsReading the resultsReading the results

When evaluating the results of a test, the
most important columns to check are Results
and the three badge columns. The Results
column tells you whether the test worked as
expected. Green means yes; red means that
the test failed in some way. The three badge
columns tell you whether the COLLADA files
meet expectations. If they do, the column(s)
will be green; if not, they will be red. It is
possible for a Results column to be green and
one or more badge columns to be red. This
means that the test didn’t blow up but a
badge was not achieved because the target
application failed to meet expectations.

© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group. All product names are trademarks or registered trademarks of their respective holders.

When a test passes, you get messages that look like this:

Figure 16. A green (passed) indication in the Result column has nothing to do with badges. Figure 16. A green (passed) indication in the Result column has nothing to do with badges. Figure 16. A green (passed) indication in the Result column has nothing to do with badges. Figure 16. A green (passed) indication in the Result column has nothing to do with badges.
It simply means that the test executed properly (didn’t crash). It simply means that the test executed properly (didn’t crash). It simply means that the test executed properly (didn’t crash). It simply means that the test executed properly (didn’t crash).

FigureFigureFigureFigure 17. Green in Result, red in badge: When the Result column is green, 17. Green in Result, red in badge: When the Result column is green, 17. Green in Result, red in badge: When the Result column is green, 17. Green in Result, red in badge: When the Result column is green,
the test/application has run okay, but a badge wasn’t awarded.the test/application has run okay, but a badge wasn’t awarded.the test/application has run okay, but a badge wasn’t awarded.the test/application has run okay, but a badge wasn’t awarded.

© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group. All product names are trademarks or registered trademarks of their respective holders.

Figure 18. Baseline only passed.Figure 18. Baseline only passed.Figure 18. Baseline only passed.Figure 18. Baseline only passed.

Figure 19. Baseline and Superior passed, but some of the tests failed the ExemplaFigure 19. Baseline and Superior passed, but some of the tests failed the ExemplaFigure 19. Baseline and Superior passed, but some of the tests failed the ExemplaFigure 19. Baseline and Superior passed, but some of the tests failed the Exemplary level.ry level.ry level.ry level.

© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group. All product names are trademarks or registered trademarks of their respective holders.

Figure 20. Test run successfully and all levels passed. Figure 20. Test run successfully and all levels passed. Figure 20. Test run successfully and all levels passed. Figure 20. Test run successfully and all levels passed.

You can add comments to a test’s row by
double-clicking in the Comments cell.

Figure 21. The Comments cell.Figure 21. The Comments cell.Figure 21. The Comments cell.Figure 21. The Comments cell.

The Test Scene column in the grid contains a
link to the COLLADA document used as input
to the test. You can open the COLLADA
document by using the View Image option in
the context menu. The Test Filename column
shows the name of the document prefaced by
its path in the StandardDataSets directory.

The Import, Render, Export, Import, Render,
and Validate columns contain links to the
output from each of those tasks for a given
test. The first Import column links to the
application’s native file generated from the
Test Scene COLLADA document. The second
Import column links to the application’s native
file generated from the first cycle’s exported
COLLADA document. The Blessed column
shows what the rendered COLLADA document
should look like. Depending on what’s being
tested, if your Render columns don’t resemble
the blessed image, you know immediately
that something is wrong. (If rendering the
image isn’t the objective of the test, a non-
match doesn’t matter.)

© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group. All product names are trademarks or registered trademarks of their respective holders.

Don’t worry about anything the manual or the context menu say about blessing an execution. This is
a legacy item that isn’t used.

You can export your results to HTML so others can see them. When you do, the CTS gives you a
scorecard at the top of the HTML page. (See Figure 22.)

Figure 22. CTS results exported to HTML with the results listed at the top.Figure 22. CTS results exported to HTML with the results listed at the top.Figure 22. CTS results exported to HTML with the results listed at the top.Figure 22. CTS results exported to HTML with the results listed at the top.

What to do wWhat to do wWhat to do wWhat to do when a test failshen a test failshen a test failshen a test fails

The Result column tells you how each step in
the test fared. Possible messages include:

• Ignored
• Warning
• Passed

If there’s green in the Result column and a
badge column, it means the test executed
correctly and a badge was awarded.

If there’s green in the Result column and red
in a badge column, the application can execute
the test correctly (i.e. all the Import/Render/
Export steps were successful) but the output
files are not COLLADA conformant.

Figure 23. When a test crashes, thFigure 23. When a test crashes, thFigure 23. When a test crashes, thFigure 23. When a test crashes, the Result e Result e Result e Result
column turns red. column turns red. column turns red. column turns red.

When a Validate task fails, the CTS tells you
how many warnings and errors you got. You

© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group. All product names are trademarks or registered trademarks of their respective holders.

can view the errors by clicking on View Report
in the context menu for the Validate cell in
question. See Figure 24.

Figure 24. The ViFigure 24. The ViFigure 24. The ViFigure 24. The View Report function from ew Report function from ew Report function from ew Report function from
the context menu is used to diagnose failed the context menu is used to diagnose failed the context menu is used to diagnose failed the context menu is used to diagnose failed
Validate operations. Validate operations. Validate operations. Validate operations.

A test can fail if a prerequisite test has not
been run and/or passed. When that happens,
you get a message telling you which test(s)
you need to run, by name, not test number
(e.g., “_Reference _Oneimage test case”).
However, the suite is meant to be run in the
order presented, so you won’t encounter this
situation under normal circumstances.

Comparing test runsComparing test runsComparing test runsComparing test runs

The CTS allows you to compare test runs
against each other. Comparing test runs helps
pinpoint bugs and areas of nonconformance.
You might want to see previous error
messages, which don’t display on the grid
once a test has been superseded. You might
also want to see whether a step that failed in
the past is now passing, or you may want to
compare output to see whether it’s improved.
By comparing images, you can see if you are
getting warmer or colder. You can tell which
tests have been run more than once by
checking the Different from Previous column.

Figure 25. Comparing test runs.Figure 25. Comparing test runs.Figure 25. Comparing test runs.Figure 25. Comparing test runs.

© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group. All product names are trademarks or registered trademarks of their respective holders.

To see the results of a previous test, right-click
anywhere in the test row and select Show
Previous. You can delete an execution from
the GUI by right-clicking on the test and
selecting Delete Execution. The histories are
stored in the TestProcedures directory.

When you compare executions, the results of
the selected tests display in a pop-up window.
Beware: when you select an execution to
compare with the current one, all you have to
go by is the date and sequence number of the
execution! If you want to know which
execution of many to choose, you have to keep
track of dates and sequence numbers!

Comparing imagesComparing imagesComparing imagesComparing images

Comparing images helps you diagnose
problems in your application. You can compare
what the application is generating with the
ideal—the blessed image that comes with the
suite—or with images you’ve produced during
different test runs or steps.

There are three dialog boxes involved in the
image comparison process: the Compare
Image With, where you select the images you
want to use; the Image Comparison, where
you actually look at the images side by side;
and the Image Diff dialog, which shows you
the pixel-by-pixel differences.

Figure 26. Use the context menu on the Figure 26. Use the context menu on the Figure 26. Use the context menu on the Figure 26. Use the context menu on the
image you want to image you want to image you want to image you want to ccccompare.ompare.ompare.ompare.

The Compare Image With dialogThe Compare Image With dialogThe Compare Image With dialogThe Compare Image With dialog

To compare images generated by a particular
test with blessed images or with other images
your application has produced during
conformance testing, select the thumbnail for
the image in question and right-click to bring
up the context menu. Select Compare Image,
and the Compare Image With dialog will pop
up.

© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group. All product names are trademarks or registered trademarks of their respective holders.

You can include the blessed image in your
comparison, but you cannot choose only the
blessed image; you must also select another
image generated during testing, either as
output from a different step, or from a
different execution, or from a different test, or
from a different test procedure. Fortunately,
you don’t have to remember every place
you’ve generated a like image; the drop-down

menu in the dialog shows you the options, and
you select from those. Steps are numbered 0-
5; different executions are identified by date
and sequence number. If there are no valid
different tests or test procedures, those
choices will be grayed out, and you won’t be
able to select from them.

FigFigFigFigure 27. The Compare Image With dialog box showing the various steps in the selected test. ure 27. The Compare Image With dialog box showing the various steps in the selected test. ure 27. The Compare Image With dialog box showing the various steps in the selected test. ure 27. The Compare Image With dialog box showing the various steps in the selected test.
All the steps are listed even though some of them don’t generate images.All the steps are listed even though some of them don’t generate images.All the steps are listed even though some of them don’t generate images.All the steps are listed even though some of them don’t generate images.

The Image Comparison dialogThe Image Comparison dialogThe Image Comparison dialogThe Image Comparison dialog

In this box, the images you’ve selected are
displayed side by side. If you’ve included the
blessed image, you’ll see it on the far left. The
reference image—the one from the test you
highlighted in the GUI—displays in the middle,
and the image you’ve chosen to compare with
is on the right. Metadata about the test and
the execution date and sequence appears

above. If your image is part of an animation,
you can page through the frames by using the
right and left arrows.

In Figure 28, you can see that there’s a shader
problem in the tested image: the link on the
left has no shading at all.

© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group. All product names are trademarks or registered trademarks of their respective holders.

 Figure 28. The image comparison dialog.Figure 28. The image comparison dialog.Figure 28. The image comparison dialog.Figure 28. The image comparison dialog.

The Image Diff dialogThe Image Diff dialogThe Image Diff dialogThe Image Diff dialog

The Image Diff box shows you the absolute
and relative differences between your image
and either the blessed or the comparison
image. On the lefthand side of the Image Diff
box, you can see the absolute pixel by pixel
difference. On the right is the grayscale
relative difference where the most different
pixels are shown in white.

To compare your image with the blessed
image, press Different Blessed. To compare
your image with the comparison image, press
Diff Image2. You can only make one
comparison at a time.

Because the absolute difference is calculated
by subtracting one set of pixels from the
other, the result shows you where there are
rendering deviations. (If the images are exactly

the same, the absolute difference will come
out black, so the blacker the absolute
difference, the more the images match.) The
relative difference is the grayscale
representation of those absolute differences
normalized. The magnitude of the greatest
difference is shown as white, which means
that anywhere you see white, the relative
difference image differs most from the
comparison image.

In Figure 29, the image on the left shows that
there’s a shading problem. The black areas are
okay, but the strong blue and yellow areas
show that there’s too much blue and yellow in
the tested image. In the image on the right,
you can see that the areas of greatest
difference—the strongest white—occur in the
glove.

© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group. All product names are trademarks or registered trademarks of their respective holders.

 Figure 29. Another image coFigure 29. Another image coFigure 29. Another image coFigure 29. Another image comparison. mparison. mparison. mparison.

TroubleshootingTroubleshootingTroubleshootingTroubleshooting

SetupSetupSetupSetup

If the test suite will not launch, run the Python
script from command-line to see error reports.

If wx or OpenGL is mentioned make sure you
installed both packages into the correct
Python version.

If your script code doesn’t compile, the suite
will not launch.

Do not render .PNG images at a resolution
greater than 512 x 512 or you could run out of
memory.

During testing, the size of input and output
documents will be compared and warnings will
be generated if the output document grows in
size by an unusual amount.

This will not cause a test to fail but
implementers are strongly encouraged to
follow these recommendations to avoid
excessive growth of documents.

• Exporters should strip non-significant
leading/trailing zeros from numbers in
the output.

• If the XML output is indented,
indentations should be kept to a
reasonable minimum. Two spaces or
one hard tab per level is sufficient.

• Indentations should be avoided when
writing out large arrays or lists of
numbers. These can be written as a
single long line of text with separating
spaces or they can be broken into
multiple non-indented lines.

© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group. All product names are trademarks or registered trademarks of their respective holders.

Judging scripts Judging scripts Judging scripts Judging scripts

To achieve a badge beyond Baseline, your
application must pass the Baseline tests and and and and
the Superior and/or Exemplary tests. Even
though some tests are labeled “Superior” or
“Exemplary,” they are not the only ones that
test advanced capabilities.

Each test comes with a judging script that
looks at the outputs and status returns from
the test. The judging scripts are stored with
the test cases in the StandardDataSets
directory. You have to drill down to the lowest
level of a directory to find them; they’re stored

at the same level as the .DAE file input to the
test. These files contain useful information
about what the test is looking for in order to
satisfy each badge level.

For example, if you look at the
multi_contributor judging script (Test ID 0711,
#2 on the grid) in the folder,
C:\CTS\StandardDataSets\collada\library_geo
metries\geometry\asset\contributor\, you
will see that this test involves all three badge
levels and deals with them like this:

JudgeBaseline: just verifies that the standard steps did not crash.
JudgeSuperior: also verifies that the validation steps are not in error.#
JudgeExemplary: same as intermediate badge.

These comments will quickly tell you whether
the test does anything special for the
advanced badges. (You may also want to
check the code to make sure they’re correct.
There are cases in which the comments
contradict the code.) In this case, the Superior
level and Exemplary levels require that the
target application meet additional criteria.

We see also that at the baseline level, not only
must the test not crash, but
import/export/validate must exist and pass,
while render must only exist.

You can verify which operations the test is
performing in the code. Only import, export,
and validate are used. Render is absent:

self.__assistant.CheckSteps(context, ["Import", "Export", "Validate"], [])

However, in a script like
C:\CTS\StandardDataSets\collada\library_cameras\camera_reference_reference_optics_orthograp
hic_zfar_z_near (Test ID 0106, #90 on the grid), all the operations are necessary:

self.__assistant.CheckSteps(context, ["Import", "Export", "Validate"], ["Render"])

The Render operation must exist because at the Superior level, the rendered images are compared, in
this line:

self.__assistant.CompareRenderedImages(context)

The multi_contributor script tests all the levels separately, returning unique results for each, but the
camera script tests only the Baseline and Superior levels, returning the same result for both the
Superior and Exemplary levels.

© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group. All product names are trademarks or registered trademarks of their respective holders.

The judging script driverThe judging script driverThe judging script driverThe judging script driver

The judging script for each test passes parameters to the judging driver script, FResult, which is
stored in the C:\CTS\Core\Logic directory. That script contains the status codes that determine the
results of a test:

PASSED_IMAGE = 0

 PASSED_ANIMATION = 1
 PASSED_VALIDATION = 2
 FAILED_IMAGE = 3
 FAILED_ANIMATION = 4
 FAILED_VALIDATION = 5
 FAILED_MISSING = 6
 IGNORED_TYPE = 7
 IGNORED_NO_BLESS_IMAGE = 8
 IGNORED_NO_BLESS_ANIMATION = 9
 IGNORED_NONE = 10
 CRASH = 11

These status codes govern what goes in the badge and results columns in the GUI.

The COLLThe COLLThe COLLThe COLLADA input documentsADA input documentsADA input documentsADA input documents

You can look at the COLLADA input documents to see the information you're trying to process. For
example, using the tests from the judging script section, look at the accompanying .DAE input files,
C:\CTS\StandardDataSets\collada\library_geometries\geometry\asset\contributor\multi_contribut
or.DAE and
C:\CTS\StandardDataSets\collada\library_cameras\camera_reference_reference_optics_orthograp
hic_zfar_z_near_reference_optics_orthographic_zfar_z_near.DAE.

You can see that the multi_contributor document contains two contributors (one of whom is Bugs
Bunny). The camera document contains a main camera with these attributes:

<library_cameras>
 <camera id="mainCamera" name="mainCamera">
 <optics>
 <technique_common>
 <orthographic>
 <ymag>100</ymag>
 <aspect_ratio>1</aspect_ratio>
 <znear>0.1</znear>
 <zfar>5000</zfar>
 </orthographic>
 </technique_common>
 </optics>
 </camera>

</library_cameras>

All the COLLADA input files are available in the StandardDataSets directory. You can open them
directly from the GUI by selecting the Test Scene cell, then View Image from the context menu.

© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group. All product names are trademarks or registered trademarks of their respective holders.

The COLLADA output documentsThe COLLADA output documentsThe COLLADA output documentsThe COLLADA output documents

You can see what you’re generating by
examining your COLLADA output documents.
There are two ways to view them:

1. The easiest way is to right-click
on the export column in the GUI
and select View Image, then
Text Only. The menu item says
View Image, but the result is an
XML text file, not an image.

2. You can also look in the Test
Procedures directory. You must
drill down from the test number
through the specific execution
to the desired step to get to the
.DAE file. Open as you would
any text file.

DocumentationDocumentationDocumentationDocumentation

In the CTS Documentation directory,
you will find:

• The CTS Manual (CTSManual.doc)

• A COLLADA CTF How To
(CTF_How_To.doc) that covers setup,
fixing Autodesk® Maya® errors,
creating and running a simple test
procedure, how to create your own
test, and how to add a test to a local
copy of the framework

• A brief COLLADA CTS overview

(README.doc) that explains simply
how to create a test procedure and
submit results.

and in the subdirectory HowToAddSoftware,
HowToIntegrateSoftware.doc, which lists the
methods you’ll need in your integration script
and tells you how to call them.

There are two Python scripts in the Scripts
subdirectory of HowToAddSoftware: FDebug
and FMimic. FDebug helps you debug your
integration script by printing a message and

parameters for all steps in the process. FMimic
is a simple renderer that attempts to pass by
copying the input and providing a single test
image. It is used to validate that this type of
renderer cannot pass the conformance suite. It
also serves as a good example for command
line tools that want to integrate with the
suite.

The public COLLADA mailing list is a great
resource for asking questions and reporting
bugs. To subscribe to the public COLLADA
mailing list, send an email to
majordomo@khronos.org. In the body of your
message include the line subscribe
public_collada. You will receive an email with
instructions asking you to confirm your email
address. Once you are subscribed, you can
send messages to the public COLLADA mailing
list by emailing public_collada@khronos.org.

Submitting Results to KhronosSubmitting Results to KhronosSubmitting Results to KhronosSubmitting Results to Khronos

Once you’ve passed all the tests, you can
submit your results to Khronos, where
reviewers will examine your results,
integration script, and other material. You will
need to include two text files in your
submission package: submission_details.txt
and build_information_text, both of which are
found in the CTS documentation folder. You
will also need to include the source of all files
edited to fix bugs in the suite and integrate
your application with it.

The important thing to know about
submitting results is that you should
document your work throughout the process
because Khronos will ask you for details. The
build_information_template.txt file requires
lists of all files added/removed/modified to
fix bugs and summarizes the integration and
build procedure.

© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group© 2011 Khronos Group. All product names are trademarks or registered trademarks of their respective holders.

Here is a sample. Lines preceded by a pound sign are comments:

 Mod: config.txt - Added My Software to list
 Add: Scripts/FMySoftware.py - Integration script for my software
 Mod: StandardDataSets/Collada/asset/up_axis/up_axis.dae - Does not validate
 Rem: StandardDataSets/Collada/asset/up_axis/up_axis.dae - Invalid Test

 # Document any binaries changed and why.
 python: Version 2.6.2 - Required to run correctly on Windows 7
 pythonurl: http://www.python.org/download/python_2.6.2.exe

You will also need to fill out
submission_details_template.txt, which asks
for information about your product(s), the
version of COLLADA being tested, supporting
libraries used, the date of the tests used,
Bugzilla bugs and waivers, and so on.

You will also need to submit any changed test
suite source code, which should be modified
only to fix bugs, and your implementation
script. Place the source code in a directory
called ChangeSet, which should go in the same
relative path as the install directory.

The PackagedResults folder in the CTS
directory contains other files necessary for
submission: the results of your tests
(automatically placed) and a spreadsheet
summarizing your results. Add
build_information_template.txt and
submission_details_template.txt to the folder
and go to the Upload test results area of the
Implementers or Adopters section of the
Khronos Web site to submit.

