

WebGL and Education

Ed Angel
Professor Emeritus of Computer Science
University of New Mexico
angel@cs.unm.edu
www.cs.unm.edu/~angel

Overview

- Textbook: Angel and Shreiner, Interactive Computer Graphics, Seventh Edition
 - First edition 1996
 - Introduced top-down approach with OpenGL
 - Over 250 US adoptions
- SIGGRAPH courses (SIGGRAPH U)
- Coursera MOOC
- Also Eric Haines' three.js Udacity MOOC

Difference in Perspective

- Key topics in a university course
 - Geometry
 - Representation
 - Coordinate systems and transformations
 - Projection
 - Lighting and shading
 - Rasterization
 - Texture mapping
 - Interaction

Three Major Transitions

- 1997: fixed function OpenGL
 - OpenGL + GLUT + GLEW
- 2011: shader-based OpenGL
 - Major change for instructors
 - CORE profile incompatible with GLUT
- 2014: WebGL

My Experience (academic)

- WebGL is big winner
- Runs everywhere without recompilation
- Uses local resources
- No other libraries needed
- Easy to support instructors
- Startup slower but huge benefits later

But there are issues

- JS
- HTML, CSS, jQuery,.....
- Brower inconsistencies
- Unclear where WebGL fits in
 - Why not three.js?
- Books and websites often not helpful
- MOOC audience very different

Future

- No question that for educational purposes, WebGL is big winner for CS/CE course
 - As is three.js for CAD courses
- Waiting for ES6